Plant Soil Environ., 2002, 48(7):322-326 | DOI: 10.17221/4375-PSE

To contemplate quantitative and qualitative water features by neural networks method

M. Neruda, R. Neruda
Faculty of Environmental Studies, University J.E. Purkynì in Ústí nad Labem, Czech Republic 2 Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic

An application deals with calibration of neural model and Fourier series model for Ploučnice catchment. This approach has an advantage, that the network choice is independent of other example's parameters. Each networks, and their variants (different units and hidden layer number) can be connected in as a black box and tested independently. A Stuttgart neural simulator SNNS and a multiagent hybrid system Bang2 developed in Institute of Computer Science, AS CR have been used for testing. A perceptron network has been constructed, which was trained by back propagation method improved with a momentum term. The network is capable of an accurate forecast of the next day runoff based on the runoff and rainfall values from previous day.

Keywords: rainfall-runoff models; Ploučnice river catchment; applications of artificial neural networks; water quality

Published: July 31, 2002  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Neruda M, Neruda R. To contemplate quantitative and qualitative water features by neural networks method. Plant Soil Environ. 2002;48(7):322-326. doi: 10.17221/4375-PSE.
Download citation

References

  1. Box G.E., Jenkins G.M. (1976): Time series analysis: forecasting and control. Holden-Day, Oakland, California.
  2. Drbal K., Starý M. (1998): Pøedpovìdní modely a øízení manipulací pøi povodních. In: Sbor. Ref. 7. Symp. Systém povodòové ochrany ÈR, Olomouc: 59–67.
  3. Fošumpaur P. (1998): Application of artificial neural networks (ANNs) to rainfall-runoff process. In: Sbor. Ref. Workshop’98, Part III. ÈVUT, Praha: 985–986.
  4. Fošumpaur P. (1999): Použití umìlých neuronových sítí pro operativní pøedpovìdi øíèních prùtokù. Vod. Hospod., 6: 121–123.
  5. Hsu K., Gupta H.V., Sorooshian S. (1995): Artificial neural network modeling of the rainfall-runoff process. Wat. Resour. Res., 31: 2517–2530. Go to original source...
  6. Minns A.W. (1996): Extended rainfall-runoff modelling using artificial neural networks. In: Muller (ed.): Hydroinformatics ’96. Balkerna, Rotterdam: 207–213.
  7. Neruda R. (1995): Functional equivalence and genetic learning of RBF networks. In: Pearson D.W., Steele N.C., Albrecht R.F. (eds.): Artificial neural nets and genetic algorithms. Proc. Int. Conf. Wien, Springer-Verlag: 53–56. Go to original source...
  8. Rumelhart D., Hinton E.G., Williams R.J. (1986): Learning internal representations by error propagation. MIT Press, Cambridge, Mass. Go to original source...
  9. Starý M. (1996): Modelování hydrogramù povodòových vln v systému stanic s využitím neuronových sítí. In: Sbor. Ref. Konf. Pøehradní dny, Hradec nad Moravicí, Povodí Odry, a. s., Èeský pøehradní výbor: 248–252.
  10. Starý M. (1998): Neuronové sítì a pøedpovìï kulminaèních prùtokù a objemù povodní v povodí øeky Ostravice – uzávìrový profil Šance. Vodohosp. Èas., 46: 45–61. Šíma J., Neruda R. (1997): Teoretické otázky neuronových sítí. MatfyzPress, MFF UK Praha.
  11. Základní vodohospodáøská mapa (1999): 1:50 000, 03-31 Mimoò. ÈÚZK, Praha.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.