Plant Soil Environ., 2004, 50(12):513-517 | DOI: 10.17221/4067-PSE

The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes

D. Pavlíková, T. Macek, M. Macková, M. Surá, J. Száková, P. Tlustoš
1 Czech University of Agriculture in Prague, Czech Republic
2 Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Czech Republic
3 Institute of Chemical Technology, Czech Republic

Tobacco, Nicotiana tabacum L., var. Wisconsin 38 as the control (WSC), and four genetically modified lines of the same variety, were tested for Cd, Zn and Ni accumulation. Genetically modified lines of the same variety, bearing the transgene CUP1 (gene coding a yeast metallothionein), GUS (reporter gene for ß-glucuronidase), HisCUP (CUP combined with a polyhistidine tail), and HisGUS (reporter gene for ß-glucuronidase, combined with a polyhistidine tail) under a constitutive promoter, enabling it to follow the heavy metal tolerance and uptake changes as a function of the transgene present. Control and transgenic lines were tested for accumulation of risk elements on sand nutrient medium with the addition of cadmium, zinc and nickel. The results showed high Cd accumulation ability of HisCUP line. The Cd content in aboveground biomass was increased by 90% compared to the non-transformed control and Cd content in roots was decreased by 49%. Determination of Zn content in aboveground biomass did not confirm higher uptake by transgenic plants significant for phytoremediation. The Ni content was significantly increased in aboveground biomass of HisGUS construct. GUS construct introduced the ability to accumulate all investigated metals; the others accumulated only one in extended amount.

Keywords: transgenic tobacco; metallothionein; polyhistidine; ß-glucuronidase; cadmium; zinc; nickel; accumulation

Published: December 31, 2004  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pavlíková D, Macek T, Macková M, Surá M, Száková J, Tlustoš P. The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ. 2004;50(12):513-517. doi: 10.17221/4067-PSE.
Download citation

References

  1. Baker A.J.M., Brooks R.R. (1998): Terrestrial higher plants which accumulate metals elements: A review of their distribution, ecology and phytochemistry. Biorecovery, 1: 81-126.
  2. Brandle J.E., Labbe H., Ha ori J., Miki B.L. (1993): Field performance and heavy metal concentrations of transgenic flue-cured tobacco expressing a mammalian metallothionein-beta-glucuronidase gene fusion. Genome, 36: 255-260. Go to original source... Go to PubMed...
  3. Cunnigham S.D., Berti W.R., Huang J.W. (1995): Phytoremediation of contaminated soils. Trends Biotechnol., 13: 393-397. Go to original source...
  4. Dorlhac de Borne F., Elmayan T., De Roton Ch., De Hys L., Tepfer M. (1998): Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Mol. Breed., 4: 83-90. Go to original source...
  5. Elmayan T., Tepfer M. (1994): Synthesis of a bifunctional metallothionein beta-glucuronidase fusion protein in transgenic tobacco plants as a means of reducing leaf cadmium levels. Plant J., 6: 433-440. Go to original source... Go to PubMed...
  6. Hasegawa I., Terada E., Sunairi M., Wakita H., Schimmachi F., Noguchi A., Nakajima M., Yazaki J. (1997): Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil, 196: 277-281. Go to original source...
  7. Hattori J., Labbe H., Miki B.L. (1994): Construction and expression of a metallothionein beta-glucuronidase gene fusion. Genome, 37: 508-512. Go to original source... Go to PubMed...
  8. Kärenlampi S., Schat H., Vangronsveld J., Verkleij J.A.C., van der Lelie D., Mergeay M., Tervahauta A.I. (2000): Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ. Pollut., 107: 225-231. Go to original source... Go to PubMed...
  9. Kotrba P., Macek T., Ruml T. (1999): Heavy metal-binding peptides and proteins in plants. Collect. Czech Chem. Commun., 64: 1057-1086. Go to original source...
  10. Krämer U., Chardonnens A.N. (2001): The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl. Microbiol. Biotechnol., 55: 661-672. Go to original source... Go to PubMed...
  11. Krämer U., Cotter-Howells J.D., Charnock J.M., Baker A.J.M., Smith J.A.C. (1996): Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379: 635-638. Go to original source...
  12. Macek T., Macková M., Kás J. (2000): Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv., 18: 23-35. Go to original source... Go to PubMed...
  13. Macek T., Macková M., Kučerová P., Chromá L., Burkhard J., Demnerová K. (2002a): Phytoremediation. In: Agathos S., Reineke W. (eds.): Biotechnology for the environment: Soil remediation. Kluwer Acad. Publ., Brussels, Belgium: 115-137.
  14. Macek T., Macková M., Pavlíková D., Száková J., Truksa M., Singh-Cundy A., Kotrba P., Yancey N., Scouten W.H. (2002b): Accumulation of cadmium by transgenic tobacco. Acta Biotechnol., 22: 101-106. Go to original source...
  15. Macek T., Macková M., Truksa M., Singh-Cundy A., Kotrba P., Yancey N., Scouten W.H. (1996): Preparation of transgenic tobacco with a yeast metallothionein combined with a polyhistidine tail. Chem. Listy, 90: 690.
  16. Němeček J., Podlešáková E., Vácha R. (2001): Prediction of the transfer of trace elements from soils into plants. Rostl. Výr., 47: 425-432.
  17. Ow D.W. (1996): Heavy metal tolerance genes: prospective tools for bioremediation. Resour. Conserv. Recycl., 18: 135-149. Go to original source...
  18. Pilon-Smits E., Pilon M. (2002): Phytoremediation of metals using transgenic plants. Crit. Rev. Plant Sci., 21: 439-456. Go to original source...
  19. Rauser W.E. (1999): Structure and function of metal chelators produced by plants - The case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem. Biophys., 31: 19-48. Go to original source... Go to PubMed...
  20. Vollenhofer S., Burg K., Schmidt J., Kroath H. (1999): Genetically modified organisms in food-screening and specific detection by PCR. J. Agr. Food. Chem., 47: 5038-5043. Go to original source... Go to PubMed...
  21. Vysloužilová M., Tlustoš P., Száková J., Pavlíková D. (2003): As, Cd, Pb and Zn uptake by different Salix spp. grown at soils enriched by high loads of these elements. Plant Soil Environ., 49: 191-196. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.