Plant Soil Environ., 2011, 57(7):338-343 | DOI: 10.17221/63/2011-PSE

Analysis of anatomical and functional traits of xylem in Humulus lupulus L. stems

V. Gloser1, M. Baláž1, P. Svoboda2
1 Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
2 Hop Research Institute Ltd., Žatec, Czech Republic

Hop plants have unusually low values of the ratio between internal area of xylem conducts and leaf area, indicating that their xylem conducts solutes very efficiently. In the present study we analyzed the structure and function of xylem in stems of field-grown hop plants. Vessels of secondary xylem (SX) were more potent to conduct solutes compared to primary xylem (PRX) as they were wider (maximal/mean diameter of SX vessels in basal stem segments was on average 209/73 μm compared to 82/40 μm in PRX) and longer (up to 75 cm, compared up to 30 cm in PRX). The contribution of PRX to total Kh of the segment was on average 45.0 ± 29.9% in apical, but only 1.8 ± 0.4% in basal stem segments with well differentiated SX. We discuss differences and non-linear relationship between measured hydraulic conductivity (Kh) and Kh calculated from vessel diameters and suggest a simplified approach suitable for routine evaluation of theoretical Kh of hop cultivars.

Keywords: Hagen-Poiseuille equation; Huber value; hydraulic conductivity; vessel diameter; vessel length

Published: July 31, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Gloser V, Baláž M, Svoboda P. Analysis of anatomical and functional traits of xylem in Humulus lupulus L. stems. Plant Soil Environ. 2011;57(7):338-343. doi: 10.17221/63/2011-PSE.
Download citation

References

  1. Ewers F.W., Fisher J.B., Chiu S.T. (1989): Water transport in the liana Bauhinia fassoglensis (Fabaceae). Plant Physiology, 91: 1625-1631. Go to original source... Go to PubMed...
  2. Fric V., Havel J., Libich V., Kříž J., Makovec K., Pertlík Z., Rybáček V., Sachl J., Srp A., Šnobl J., Vančura M. (1991): Developments in Crop Science 16: Hop Production. Elsevier, Amsterdam.
  3. Ewers F.W., Fisher J.B., Fichtner K. (1991): Water flux and xylem structure in vines. In: Putz F.E., Mooney H.A. (eds.): The Biology of Vines. Cambridge University Press, Cambridge. Go to original source...
  4. Kopecký J., Ježek J. (2008): The effect of irrigation on the yield of hops in 2007. Chmelařství, 80: 149-153. (In Czech)
  5. Martre P., Durand J.L., Cochard H. (2000): Changes in axial hydraulic conductivity along elongating leaf blades in relation to xylem maturation in tall fescue. New Phytologist, 146: 235-247. Go to original source... Go to PubMed...
  6. Nijsse J., Van Der Heijden G., Van Ieperen W., Keijzer C.J., Van Meeteren U. (2001): Xylem hydraulic conductivity related to conduit dimensions along Chrysanthemum stems. Journal of Experimental Botany, 52: 319-327. Go to original source...
  7. Pittermann J., Sperry J.S., Hacke U.G., Wheeler J.K., Sikkema E.H. (2005): Torus-margo pits help conifers compete with angiosperms. Science, 310: 1924. Go to original source... Go to PubMed...
  8. Rossbauer G., Buhr L., Hack H., Hauptmann S., Klose R., Meier U., Stauss R., Weber E. (1995): Phänologische Entwicklungsstadien von Kultur-Hopfen (Humulus lupulus L.). Nachrichtenbl. Deut. Pflanzenschutzd., 47: 249-253.
  9. Sperry J.S., Donnelly J.R., Tyree M.T. (1988): A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment, 11: 35-40. Go to original source...
  10. Sperry J.S., Hacke U.G., Pittermann J. (2006): Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93: 1490-1500. Go to original source... Go to PubMed...
  11. Trnka M., Kysely J., Mozny M., Dubrovsky M. (2009): Changes in central-european soil-moisture availability and circulation patterns in 1881-2005. International Journal of Climatology, 29: 655-672. Go to original source...
  12. Tyree M.T., Davis S.D., Cochard H. (1994): Biophysical perspectives of xylem evolution - is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction. Iawa Journal, 15: 335-360. Go to original source...
  13. Tyree M.T., Ewers F.W. (1991): The hydraulic architecture of trees and other woody plants. New Phytologist, 119: 345-360. Go to original source...
  14. Tyree M.T., Zimmermann M.H. (2002): Xylem Structure and Ascent of Sap. Springer Verlag, Berlin.
  15. Wheeler J.K., Sperry J.S., Hacke U.G., Hoang N. (2005): Intervessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell and Environment, 28: 800-812. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.