Plant Soil Environ., 2015, 61(12):544-552 | DOI: 10.17221/602/2015-PSE

A bitter cup: the estimation of spatial distribution of carbon balance in Coffea spp. plantations reveals increased carbon footprint in tropical regionsOriginal Paper

L.D. Martins1, F.C. Eugenio1, W.N. Rodrigues1, S.V.B. Brinate1, T.V. Colodetti1, J.F.T. Amaral1, W.C. Jesus Júnior2, J.C. Ramalho3, A.R. dos Santos1, M.A. Tomaz1
1 Center of Agricultural Sciences, Ufes, Alegre, Brazil
2 Center of Agricultural Sciences, UFSCar, São Carlos, Brazil
3 Plant-Environment Interactions and Biodiversity Group, Department of Natural Resources, Environment and Territory, School of Agriculture, Lisbon University, Lisbon, Portugal

There is an increasing need to mitigate and adapt the agriculture to climate changes with strategies that synergistically allow minimizing the climate impact over the coffee production and contributing to a decrease of coffee cultivation vulnerability to global warming. In this context, the objective of this study was to analyse the carbon balance in systems of coffee production, which can contribute to information to mitigate climate change, by addressing the cultivation and production of Coffea spp. in the tropical regions, such as the Espírito Santo state of the case study (between the meridians 39°38' and 41°50' of western longitude and the parallels 17°52' and 21°19' of southern latitude). For this purpose, data of coffee plantations area (ha), carbon storage, carbon footprint and carbon balance (all in t CO2-equivalent) were recorded for different tropical regions, from 2001-2012. The estimated parameters indicate that 2 239 476 t CO2-eq were sequestrated (positive balance) and 10 320 223 t CO2-eq (negative balance) were emitted. The spatialisation allows estimating that the footprint is reduced in 92% after quantifying the carbon stock in coffee plantations. The carbon balance was negative, with magnitude of 4 815 820 t CO2-eq, which indicates that the carbon balance in coffee plantations in tropical regions is not enough to compensate the carbon footprint.

Keywords: Arabica and Robusta coffee; global warming; tropical area; carbon stocks

Published: December 31, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Martins LD, Eugenio FC, Rodrigues WN, Brinate SVB, Colodetti TV, Amaral JFT, et al.. A bitter cup: the estimation of spatial distribution of carbon balance in Coffea spp. plantations reveals increased carbon footprint in tropical regions. Plant Soil Environ. 2015;61(12):544-552. doi: 10.17221/602/2015-PSE.
Download citation

References

  1. Bunn C., Läderach P., Rivera O.O., Kirschke D. (2015): A bitter cup: Climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129: 89-101. Go to original source...
  2. Craparo A.C.W., van Asten P.J.A., Läderach P., Jassogne L.T.P., Grab S.W. (2015): Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology, 207: 1-10. Go to original source...
  3. Cruz C.D. (2013): GENES - A software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum, 35: 271-276. Go to original source...
  4. Dossa E.L., Fernandes E.C.M., Reid W.S., Ezui K. (2008): Aboveand belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agroforestry Systems, 72: 103-115. Go to original source...
  5. Eugenio F.C., de Peluzio T.M.O., Pereira A.A.B., dos Santos A.R., Peluzio J.B.E., Bragança R., Fiedler N.C., Paula E.N. da S.O. de (2014): Zoning agroclimatological Coffea canephora for Espírito Santo by spatial interpolation. Coffee Science, 9: 319-328. (In Portuguese)
  6. FAO (Food and Agriculture Organization of the United Nations). Statistics division, Emissions of the Brazil. Available at http://faostat3.fao.org/browse/area/21/S (access May 2015)
  7. Ghini R., Torre-Neto A., Dentzien A.F.M., Guerreiro-Filho O., Lost R., Patrício F.R.A., Prado J.S.M., Thomaziello R.A., Bettiol W., DaMatta F.M. (2015): Coffee growth, pest and yield responses to free-air CO 2 enrichment. Climatic Change, 132: 307-320. Go to original source...
  8. Hergoualc΄h K., Blanchart E., Skiba U., Hénault C., Harmand J.-M. (2012): Changes in carbon stock and greenhouse gas balance in a cofee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems and Environment, 148: 102-110. Go to original source...
  9. Hillier J., Walter C., Malin D., Garcia-Suarez T., Mila-i-Canals L., Smith P. (2011): A farm-focused calculator for emissions from crop and livestock production. Environmental Modelling and Software, 26: 1070-1078. Go to original source...
  10. Humbert S., Loerincik Y., Rossi V., Margni M., Jolliet O. (2009): Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso). Journal of Cleaner Production, 17: 1351-1358. Go to original source...
  11. IBGE (Instituto Brasileiro de Geografia e Estatística) (2012): Perfil dos Municípios Brasileiros - 2012. Available at http://www.ibge.gov.br/home/estatistica/economia/perfilmunic/2012/ (access May 2015)
  12. ICO (International Coffee Organization) (2014a): Trade statistics. Available at http://www.ico.org/trade_statistics.asp (access June 2015)
  13. IPCC (2014): Climate change 2014: Regional Aspects - Central and South American. Geneva, IPCC, 102.
  14. Läderach P., Haggar J., Lau C., Eitzinger A., Ovalle O., Baca M., Jarvis A., Lundy M. (2010): Mesoamerican Coffee: Building a Climate Change Adaptation Strategy. Colombia, CIAT policy brief n. 2, Centro Internacional de Agricultura Tropical.
  15. Martins L.D., Tomaz M.A., Lidon F.C., DaMatta F.M., Ramalho J.C. (2014): Combined effects of elevated [CO2] and high temperature on leaf mineral balance in Coffea spp. plants. Climatic Change, 126: 365-379. Go to original source...
  16. Pezzopane J.R.M., Castro F.S., Pezzopane J.E.M., Bonomo R., Saraiva G.S. (2010): Climatic risk zoning for Conilon coffee in Espirito Santo, Brazil. Revista Ciência Agronômica, 41: 341-348. Go to original source...
  17. Rahn E., Läderach P., Baca M., Cressy C., Schroth G., Malin D., van Rikxoort H., Shriver J. (2014): Climate change adaptation, mitigation and livelihood benefits in coffee production: Where are the synergies? Mitigation and Adaptation Strategies for Global Change, 19: 1119-1137. Go to original source...
  18. Ramalho J.C., Rodrigues A.P., Semedo J.N., Pais I.P., Martins L.D., Simões-Costa M.C., Leitão A.E., Fortunato A.S., BatistaSantos P., Palos I.M., Tomaz M.A., Scotti-Campos P., Lidon F.C., DaMatta F.M. (2013): Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO 2] . PLoSOne, 8: e82712. Go to original source... Go to PubMed...
  19. Rikxoort H., Schroth G., Läderach P., Rodríguez-Sánchez B. (2014): Carbon footprints and carbon stocks reveal climate-friendly coffee production. Agronomy for Sustainable Development, 34: 887-897. Go to original source...
  20. Rodrigues V.G.S., Castilla C., Costa R.C., Palm C. (2000): Carbon stocks in agroforestry systems with coffee in Rondônia - Brazil. In: Simpósio de pesquisa dos cafés do Brasil, 1, 2000, Poços de Caldas. Resumos Expandidos. [Poços de Caldas: s.n., 2000]. (In Portuguese)
  21. Segura M., Kanninen M., Suárez D. (2006): Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems, 68: 143-150. Go to original source...
  22. Siles P., Harmand J.-M., Vaast P. (2010): Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforestry Systems, 78: 269-286. Go to original source...
  23. Soto-Pinto L., Anzueto M., Mendoza J., Ferrer G.J., de Jong B. (2010): Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems, 78: 39-51. Go to original source...
  24. Tchibo (2008): Case Study Tchibo Privat Kaffee Rarity Machare. PCF Pilot Project Germany. Berlin, Öko-Institute.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.