Plant Soil Environ., 2016, 62(5):215-221 | DOI: 10.17221/781/2015-PSE

Microwave induced plasma optical emission spectrometry in agricultural analysisOriginal Paper

P. Niedzielski, L. Kozak, K. Jakubowski, W. Wachowiak, J. Wybieralska
Adam Mickiewicz University, Poznan, Poland

The article describes the use of the recently commercially available technique of microwave induced plasma optical emission spectrometry with plasma gas (nitrogen) generation for the determination of calcium, magnesium, phosphorus and potassium in Mehlich 3 extracts. The specifics of the analysis of the agricultural samples for soil fertility assessment mean there are often a great number of samples to analyse in laboratory (the daily throughput of 500 or more samples). The analytical procedures were adapted to special requirements by the use of the new multielemental instrumental techniques. The detection limits were 0.43; 0.86; 0.20 and 0.06 mg/L; the precision for real sample analysis: 4.6; 1.0; 1.8 and 1.0%; the mean accuracy 97; 92; 107 and 100% for P, Ca, Mg and K, respectively, the real throughput reached 100 samples per hour.

Keywords: spectrometric techniques; nutrients extraction; fertilization; macromineral composition

Published: May 31, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Niedzielski P, Kozak L, Jakubowski K, Wachowiak W, Wybieralska J. Microwave induced plasma optical emission spectrometry in agricultural analysis. Plant Soil Environ. 2016;62(5):215-221. doi: 10.17221/781/2015-PSE.
Download citation

References

  1. Alva A.K. (1993): Comparison of Mehlich 3, Mehlich 1, ammonium bicarbonate-DTPA, 1.0M ammonium acetate, and 0.2M ammonium chloride for extraction of calcium, magnesium, phosphorus, and potassium for a wide range of soils. Communications in Soil Science and Plant Analysis, 24: 603-612. Go to original source...
  2. Arai Y., Sato S., Wagatsuma K. (2013): Emission spectrometric analysis using an okamoto-cavity microwave-induced plasma with nitrogen-oxygen mixed gas. ISIJ International, 53: 1993-1999. Go to original source...
  3. Arnold E., Pray A. (1943): Colorimetric method for determination of sodium. Industrial and Engineering Chemistry Analytical Edition, 15: 294-296. Go to original source...
  4. David D.J. (1960): The determination of exchangeable sodium, potassium, calcium and magnesium in soils by atomic-absorption spectrophotometry. Analyst, 1012: 495-503. Go to original source...
  5. Jankowski K. (2001): Direct determination of trace amounts of sodium in water-soluble organic pharmaceuticals by microwave induced plasma atomic emission spectrometry. Talanta, 54: 855-862. Go to original source... Go to PubMed...
  6. Jankowski K. (2001): Microwave induced plasma emission spectrometry for environmental analysis: A review. Chemia Analityczna, 46: 305-327.
  7. Mäder P., Fliessbach A., Dubois D., Gunst L., Fried P., Niggli U. (2002): Soil fertility and biodiversity in organic farming. Science, 296: 1694-1697. Go to original source... Go to PubMed...
  8. Manouchehri N., Besancon S., Bermond A. (2006): Major and trace metal extraction from soil by EDTA: Equilibrium and kinetic studies. Analytica Chimica Acta, 559: 105-112. Go to original source...
  9. Matusiewicz H., ¦lachciński M. (2010): Analytical evaluation of an integrated ultrasonic nebulizer-hydride generator system for simultaneous determination of hydride and non-hydride forming elements by microwave induced plasma sSpectrometry. Spectroscopy Letters, 43: 474-485. Go to original source...
  10. Mavrodineanu R., Hughes R.C. (1963): Excitation in radio-frequency discharges. Spectrochimica Acta, 19: 1309-1317. Go to original source...
  11. McIntosh J. (1969): Bray and morgan soil extractants modified for testing acid soils from different parent materials. Agronomy Journal, 61: 259-268. Go to original source...
  12. Mehlich A. (1984): Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409-1416. Go to original source...
  13. Niedzielski P., Kozak L., Wachelka M., Jakubowski K., Wybieralska J. (2015): The microwave induced plasma with optical emission spectrometry (MIP-OES) in 23 elements determination in geological samples. Talanta, 132: 591-599. Go to original source... Go to PubMed...
  14. Peaslee D.E. (1964): Colorimetric determination of calcium in soil extracts. Soil Science, 97: 248-251. Go to original source...
  15. Pieters H., Hanssen W., Geurts J. (1948): Colorimetric determination of magnesium. Analitica Chimica Acta, 2: 241-253. Go to original source...
  16. Rauret G. (1998): Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46: 449-455. Go to original source... Go to PubMed...
  17. Soil Science Glossary Terms Committee (2008): Glossary of Soil Science Terms 2008. Madison, Soil Science Society of America.
  18. Takagi M., Nakamura H., Ueno K. (1977): A novel colorimetric reagent for potassium based on crown ether complex formation. Analytical Letters, 10: 1115-1122. Go to original source...
  19. Tiessen H., Cuevas E., Chacon P. (1994): The role of soil organic matter in sustaining soil fertility. Nature, 371: 783-785. Go to original source...
  20. Wuenscher R., Unterfrauner H., Peticzka R., Zehetner F. (2015): A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment, 61: 86-96. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.