Plant Soil Environ., 2017, 63(2):70-75 | DOI: 10.17221/796/2016-PSE
Grain sorghum transpiration efficiency at different growth stagesOriginal Paper
- 1 Dryland Agriculture Institute, West Texas A&M University, Canyon, USA
- 2 Texas A&M AgriLife Research and Extension Center, Amarillo, USA
Transpiration efficiency (TE) is an important physiological trait associated with drought tolerance of plants. Currently, little is known about the grain sorghum TE and its dynamics with the age of plants. To compare the sorghum TE at different growth stages, four studies (two in the greenhouse and two in the growth chamber) were conducted under controlled environmental conditions. Plants were grown in lid-covered boxes and harvested at six-leaf, flag leaf, grain filling and maturity stages. The mean shoot TE values were 4.47 and 4.10 kg/m3 for two greenhouse studies, and 4.85 and 4.30 kg/m3 for two growth chamber studies, respectively. The shoot TE was not different among four growth stages within each study, suggesting that sorghum plants used the same amount of water per unit of biomass production for different growing periods. Because crops grown under dryland environments often run out of water during reproductive periods, result supports the ideas that soil water availability at later growth stages is crucial to achieve the yield potential of dryland sorghum.
Keywords: C4 plant; water stress; shoot to root ratio; Sorghum bicolor; vapour pressure deficit
Published: February 28, 2017 Show citation
References
- Amanullah, Stewart B.A. (2013): Shoot: root differs in warm season C4-cereals when grown alone in pure and mixed stands under low and high water levels. Pakistan Journal of Botany, 45: 83-90.
- Balota M., Payne W.A., Rooney W., Rosenow D. (2008): Gas exchange and transpiration ratio in sorghum. Crop Science, 48: 2361-2371.
Go to original source...
- Ben-Gal A., Shani U. (2002): Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant and Soil, 247: 211-221.
Go to original source...
- Blum A. (2004): Sorghum physiology. In: Nguyen H.T., Blum A. (eds): Physiology and Biotechnology Integration for Plant Breeding. New York, Basel, Marcel Dekker, 141-223.
Go to original source...
- CronkLab (2016): Calculation of vapour pressure deficit. Available at: http://cronklab.wikidot.com/calculation-of-vapourpressure-deficit
- Fageria N.K. (1992): Maximizing Crop Yields. New York, Marcel Dekker.
- Haefele S.M., Siopongco J.D.L.C., Boling A.A., Bouman B.A.M., Tuong T.P. (2009): Transpiration efficiency of rice (Oryza sativa L.). Field Crops Research, 111: 1-10.
Go to original source...
- Kemanian A.R., Stöckle C.O., Huggins D.R. (2005): Transpirationuse efficiency of barley. Agricultural and Forest Meteorology, 130: 1-11.
Go to original source...
- Mantovani D., Veste M., Gypser S., Halke C., Koning L., Freese D., Lebzien S. (2014): Transpiration and biomass production of the bioenergy crop Giant Knotweed IGNISCUM under various supplies of water and nutrients. Journal of Hydrology and Hydromechanics, 62: 316-323.
Go to original source...
- Mian M.A.R., Ashley D.A., Boerma H.R. (1998): An additional QTL for water use efficiency in soybean. Crop Science, 38: 390-393.
Go to original source...
- Peng S.B., Krieg D.R. (1992): Gas exchange traits and their relationship to water use efficiency of grain sorghum. Crop Science, 32: 386-391.
Go to original source...
- Prenger J.J., Ling P.P. (2009). Greenhouse Condensation Control: Understanding and Using 355 Vapor Pressure Deficit (VPD). Wooster, Ohio State University Extension Fact Sheet.
- Rooney W.L. (2004): Sorghum improvement - Integrating traditional and new technology to produce improved genotypes. Advances in Agronomy, 83: 37-109.
Go to original source...
- Sinclair T.R., Weiss A. (2010): Principles of Ecology in Plant Production. 2 nd Ed. Cambridge, Cambridge University Press.
- Vadez V., Krishnamurthy L., Hash C.T., Upadhyaya H.D., Borrell A.K. (2011): Yield, transpiration efficiency, and water-use variations and their interrelationships in the sorghum reference collection. Crop and Pasture Science, 62: 645-655.
Go to original source...
- Waldren R.P. (1983): Corn. In: Teare L.D., Peet M.M. (eds): Crop - Water Relations. New York, John Wiley and Sons, 187-212.
- Wright G.C., Rao R.C.N., Farquhar G.D. (1994): Water-use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Science, 34: 92-97.
Go to original source...
- Xin Z.U., Aiken R., Burke J. (2009): Genetic diversity of transpiration efficiency in sorghum. Field Crops Research, 111: 74-80.
Go to original source...
- Xin Z., Franks C., Payton P., Burke J.J. (2008): A simple method to determine transpiration efficiency in sorghum. Field Crops Research, 107: 180-183.
Go to original source...
- Yang Z., Hammer G., van Oosterom E., Rochais D., Deifel K. (2010): Effects of pot size on growth of maize and sorghum plants. In: Proceedings of the First Australian Summer Grains Conference, 21-24 June. Gold Coast, Australia.
- Yoshida S. (1975): Factors that limit the growth and yields of upland rice. In: Major Research in Upland Rice. Philippines, International Rice Research Institute, 46-71.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.