Plant Soil Environ., 2017, 63(12):569-573 | DOI: 10.17221/564/2017-PSE

Analysis of soil water content and crop yield after biochar application in field conditionsOriginal Paper

Justina VITKOVA*,1, Elena KONDRLOVA2, Marek RODNY1, Peter SURDA1, Jan HORAK2
1 Institute of Hydrology of the Slovak Academy of Sciences, Bratislava, Slovak Republic
2 Department of Biometeorology and Hydrology, Slovak University of Agriculture, Nitra, Slovak Republic

Biochar has been studied extensively in terms of its influence on soil hydrophysical properties, but only small part of results was obtained from the field experiments. In this study, the soil water content was measured in 5-10 cm depth at experimental plots which received 20 t/ha and 0 t/ha (control) of biochar amendment at the Malanta area (Slovakia). The experimental area was cultivated with maize in 2015 and spring wheat in 2016. Our field measurements show that the positive effect of biochar amendment (20 t/ha) on soil water content is strongly related to the type of the crop grown and not straightforward. Unexpectedly, during the monitoring campaign in 2015 the soil water content of the biochar-amended soil was lower than control. In 2016, negligible differences were observed in soil water contents at both experimental plots, especially during the dry spells. However, higher soil water content was measured at the plot with biochar amendment after the series of precipitation events during the physiological maturity of the spring wheat. Moreover, the biochar amendment did not increase the biomass production and yields of maize in 2015, but it significantly increased the biomass production and yields of spring wheat in 2016.

Keywords: climate change; biochar; Zea mays; Triticum aestivum; field measurements

Published: December 31, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
VITKOVA J, KONDRLOVA E, RODNY M, SURDA P, HORAK J. Analysis of soil water content and crop yield after biochar application in field conditions. Plant Soil Environ. 2017;63(12):569-573. doi: 10.17221/564/2017-PSE.
Download citation

References

  1. Angin D., Sensöz S. (2014): Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.). International Journal of Phytoremediation, 16: 684-693. Go to original source... Go to PubMed...
  2. Casadesus J., Villegas D. (2012): Biomass assessment for cereal breeding using vegetation indices obtained with conventional digital cameras. Available at: http://www.ub.edu/optichinagriculture/data/uploads/workshop2/presentations/casadesus-irta.pdf (accessed on September 20, 2017)
  3. Glaser B., Lehmann J., Zech W. (2002): Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review. Biology and Fertility of Soils, 35: 219-230. Go to original source...
  4. Hagner M., Kemppainen R., Jauhiainen L., Tiilikkala K., Setälä H. (2016): The effects of birch (Betula spp.) biochar and pyrolysis temperature on soil properties and plant growth. Soil and Tillage Research, 163: 224-234. Go to original source...
  5. Chan K.Y., Van Zwieten L., Meszaros I., Downie A., Joseph S. (2008): Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46: 437-444. Go to original source...
  6. Keiluweit M., Nico P.S., Johnson M.G., Kleber M. (2010): Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44: 1247-1253. Go to original source... Go to PubMed...
  7. Kraska P., Oleszczuk P., Andruszczak S., Kwiecińska-Poppe E., Różyło K., Pałys E., Gierasimiuk P., Michałojć Z. (2016): Effect of various biochar rates on winter rye yield and the concentration of available nutrients in the soil. Plant, Soil and Environment, 11: 483-489. Go to original source...
  8. Lehmann J. (2007): Bio-energy in the black. Frontiers in Ecology and the Environment, 5: 381-387. Go to original source...
  9. Lehmann J., Gaunt J., Rondon M. (2006): Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change, 11: 403-427. Go to original source...
  10. Major J., Rondon M., Molina D., Riha S.J., Lehmann J. (2010): Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333: 117-128. Go to original source...
  11. Šimanský V., Klimaj A. (2017): How does biochar and biochar with nitrogen fertilization influence soil reaction? Journal of Ecological Engineering, 5: 50-54. Go to original source...
  12. Surda P., Vitkova J. (2016): Impact of biochar application on soil moisture dynamics and saturated hydraulic conductivity. In: Proceedings of the 16 th International Multidisciplinary Scientific GeoConference SGEM 2016, Hydrology and Water Resources, 1: 445-451. Go to PubMed...
  13. Verheijen F., Jeffery S.L., Bastos A.C., van der Velde M., Diafas I. (2010): Biochar Application to Soils - A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. Luxembourg, European Communities.
  14. Vitkova J., Surda P. (2016): Impact of biochar application on moisture in the top soil layer. Acta Hydrologica Slovaca, 2: 287-292.
  15. Woolf D., Amonette J.E., Street-Perrott F.A., Lehmann J., Joseph S. (2010): Sustainable biochar to mitigate global climate change. Nature Communications, 1: 56. Go to original source... Go to PubMed...
  16. World Reference Base for Soil Resources (2006): World Soil Resource Report No. 84. Rome, Food and Agriculture Organisation of the United Nations.
  17. Xiao G., Xiao R., Jin B.S., Zuo W., Liu J.C., Grace J.R. (2012): Study on electrical resistivity of rice straw charcoal. Journal of Biobased Materials and Bioenergy, 4: 426-429. Go to original source...
  18. Zemanová V., Břendová K., Pavlíková D., Kubátová P., Tlustoš P. (2017): Effect of biochar application on the content of nutrients (Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard. Plant, Soil and Environment, 7: 322-327. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.