Plant Soil Environ., 2018, 64(4):192-201 | DOI: 10.17221/70/2018-PSE

Correlation of extractable soil phosphorus (P) with plant P uptake: 14 extraction methods applied to 50 agricultural soils from Central EuropeOriginal Paper

Franz ZEHETNER*,1, Rosemarie WUENSCHER1, Robert PETICZKA2, Hans UNTERFRAUNER3
1 Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Austria
2 Department of Geography and Regional Research, University of Vienna, Vienna, Austria
3 Technical Office Unterfrauner, Vienna, Austria

The aim of this study was to test different soil phosphorus (P) extraction methods in relation to plant P uptake. A greenhouse pot experiment was conducted with spring wheat. The soils were extracted with the following methods/extractants: H2O, CaCl2, LiCl, iron oxide impregnated filter papers (Fe-oxide Pi), Olsen, calcium-acetate-lactate (CAL), cation and anion exchange membranes (CAEM), Mehlich 3, Bray and Kurtz II (Bray II), citrate-bicarbonate-dithionite, organic P, HCl, acid ammonium oxalate, total P. Plant P uptake was in the range of the P extracted by neutral salt solutions (CaCl2, LiCl). P extracted with H2O, CaCl2 and CAEM correlated best with plant P uptake over one growing season, while several established soil P test methods, including CAL, Mehlich 3 and Bray II, did not show significant correlations. When grouping the soils according to pH, the weaker extraction methods (H2O, CaCl2, LiCl) showed significant correlations with plant P uptake only for the low and intermediate pH groups (pH in 1 mol/L KCl ≤ 6.6), while some of the stronger extraction methods (CAL, Mehlich 3, Bray II, dithionite, oxalate, total P) showed significant correlations only for the high pH group (> 6.6) comprised of calcareous soils. It was concluded that weaker P extraction methods, especially neutral salt solutions best predict plant-available P in the short term. However, they do not perform well for calcareous (and clayey) soils and do not account for P that may become available beyond one growing season.

Keywords: soil testing; macronutrient; long-term experiment; Triticum aestivum L.; plant growth; resin P

Published: April 30, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ZEHETNER F, WUENSCHER R, PETICZKA R, UNTERFRAUNER H. Correlation of extractable soil phosphorus (P) with plant P uptake: 14 extraction methods applied to 50 agricultural soils from Central Europe. Plant Soil Environ. 2018;64(4):192-201. doi: 10.17221/70/2018-PSE.
Download citation

References

  1. Beckett P.H.T., White R.E. (1964): Studies on the phosphate potentials of soils: Part III: The pool of labile inorganic phosphate. Plant and Soil, 21: 253-282. Go to original source...
  2. Bissani C.A., Tedesco M.J., de O. Camargo F.A., Miola G.L., Gianello C. (2002): Anion-exchange resins and iron oxideimpregnated filter paper as plant available phosphorus indicators in soils. Communications in Soil Science and Plant Analysis, 33: 1119-1130. Go to original source...
  3. Blum W.E.H., Spiegel H., Wenzel W.W. (1996): Bodenzustandsinventur - Konzeption, Durchführung und Bewertung. Empfehlung zur Vereinheitlichung der Vorgangsweise in Österreich. 2 nd Edition. Vienna, Bundesministerium f. Land- und Forstwirtschaft.
  4. Blume H.-P., Brümmer G.W., Horn R., Kandeler E., Kögel-Knabner I., Kretzschmar R., Stahr K., Wilke B.-M. (2010): Scheffer/ Schachtschabel Lehrbuch der Bodenkunde. 16 th Edition. Heidelberg, Spektrum Akademischer Verlag. Go to original source...
  5. Condron L.M., Tiessen H. (2005): Interactions of organic phosphorus in terrestrial ecosystems. In: Turner B.L., Frossard E., Baldwin D.S. (eds.): Organic Phosphorus in the Environment. Wallington, CAB International, 295-307. Go to original source...
  6. Cordell D., Drangert J.-O., White S. (2009): The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19: 292-305. Go to original source...
  7. Diepenbrock W., Fischbeck G., Heyland K.-U., Knauer N. (1999): Spezieller Pflanzenbau. 2 nd Edition. Stuttgart, Eugen Ulmer GmbH & Co.
  8. Emsley J. (2001): Phosphor - Ein Element auf Leben und Tod. Weinheim, Wiley VCH.
  9. Hinsinger P., Plassard C., Tang C.X., Jaillard B. (2003): Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil, 248: 43-59. Go to original source...
  10. Kulhánek M., Balík J., Èerný J., Kozlovský O., Nedvìd V. (2009): The content of available phosphorus in soils and P uptake by plants. Scientia Agriculturae Bohemica, 40: 105-109.
  11. Kuo S. (1996): Phosphorus. In: Bartels J.M., Bigham J.M. (eds): Methods of Soil Analysis, 3. Chemical Methods. Madison, Soil Science Society of America, 869-919. Go to original source...
  12. Liu Y., Villalba G., Ayres R.U., Schroder H. (2008): Global phosphorus flows and environmental impacts from a consumption perspective. Journal of Industrial Ecology, 12: 229-247. Go to original source...
  13. Mallarino A.P., Atia A.M. (2005): Correlation of a resin membrane soil phosphorus test with corn yield and routine soil tests. Soil Science Society of America Journal, 69: 266-272. Go to original source...
  14. Mehlich A. (1984): Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409-1416. Go to original source...
  15. Menon R.G., Hammond L.L., Sissingh H.A. (1988): Determination of plant-available phosphorus by the iron hydroxideimpregnated filter paper (P i) soil test. Soil Science Society of America Journal, 52: 110-115. Go to original source...
  16. Mundus S., Carstensen A., Husted S. (2017): Predicting phosphorus availability to spring barley (Hordeum vulgare) in agricultural soils of Scandinavia. Field Crops Research, 212: 1-10. Go to original source...
  17. Murphy J., Riley J.P. (1962): A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31-36. Go to original source...
  18. Nawara S., van Dael T., Merckx R., Amery F., Elsen A., Odeurs W., Vandendriessche H., McGrath S., Roisin C., Jouany C., Pellerin S., Denoroy P., Eichler-Löbermann B., Börjesson G., Goos P., Akkermans W., Smolders E. (2017): A comparison of soil tests for available phosphorus in long-term field experiments in Europe. European Journal of Soil Science, 68: 873-885. Go to original source...
  19. Poorter H., Bühler J., van Dusschoten D., Climent J., Postma J.A. (2012): Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology, 39: 839-850. Go to original source... Go to PubMed...
  20. Saggar S., Hedley M.J., White R.E., Perrott K.W., Gregg P.E.H., Cornforth I.S., Sinclair A.G. (1999): Development and evaluation of an improved soil test for phosphorus, 3: Field comparison of Olsen, Colwell and Resin soil P tests for New Zealand pasture soils. Nutrient Cycling in Agroecosystems, 55: 35-50. Go to original source...
  21. Schachtman D.P., Reid R.J., Ayling S.M. (1998): Phosphorus uptake by plants: From soil to cell. Plant Physiology, 116: 447-453. Go to original source... Go to PubMed...
  22. Schüller H. (1969): Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphors im Boden. Zeitschrift für Pflanzenernährung und Bodenkunde, 123: 48-63. Go to original source...
  23. Shirvani M., Shariatmadari H., Kalbasi M. (2005): Phosphorus buffering capacity indices as related to soil properties and plant uptake. Journal of Plant Nutrition, 28: 537-550. Go to original source...
  24. Smil V. (2000): Phosphorus in the environment: Natural flows and human interferences. Annual Review of Energy and the Environment, 25: 53-88. Go to original source...
  25. Wuenscher R., Unterfrauner H., Peticzka R., Zehetner F. (2015): A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment, 61: 86-96. Go to original source...
  26. Zheng Z.M., Zhang T.Q. (2012): Soil phosphorus tests and transformation analysis to quantify plant availability: A review. In: Whalen J. (ed.): Soil Fertility Improvement and Integrated Nutrient Management - A Global Perspective. Rijeka, InTech, 19-36. Go to original source...
  27. Zorn W., Krause O. (1999): Untersuchungen zur Charakterisierung des pflanzenverfügbaren Phosphats in Thüringer Carbonatböden. Journal of Plant Nutrition and Soil Science, 162: 463-469. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.