Plant Soil Environ., 2018, 64(9):441-447 | DOI: 10.17221/313/2018-PSE

Four soil phosphorus (P) tests evaluated by plant P uptake and P balancing in the Ultuna long-term field experimentOriginal Paper

Klaus A. JAROSCH*,1,4, Jakob SANTNER2,3, Mohammed Masud PARVAGE4, Martin Hubert GERZABEK2, Franz ZEHETNER2, Holger KIRCHMANN4
1 Group of Soil Science, Geographical Institute, University Bern, Bern, Switzerland
2 Instituteof Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
3 Department of Crop Sciences, Division of Agronomy, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
4 Department of Soil and Environment, Swedish University of Agricultural Sciences,

Soil phosphorus (P) availability was assessed with four different soil P tests on seven soils of the Ultuna long-term field experiment (Sweden). These four soil P tests were (1) P-H2O (water extractable P); (2) P-H2OC10 (water extractable P upon 10 consecutive extractions); (3) P-AL (ammonium lactate extractable P) and (4) P-CDGT (P desorbable using diffusive gradients in thin films). The suitability of these soil P tests to predict P availability was assessed by correlation with plant P uptake (mean of preceding 11 years) and soil P balancing (input vs. output on plot level for a period of 54 years). The ability to predict these parameters was in the order P-H2OC10 > P-CDGT > P-H2O > P-AL. Thus, methods considering the P-resupply from the soil solid phase to soil solution performed clearly better than equilibrium-based extractions. Our findings suggest that the P-AL test, commonly used for P-fertilizer recommendations in Sweden, could not predict plant P uptake and the soil P balance in a satisfying way in the analysed soils.

Keywords: soil testing; macronutrient; phosphorus desorption; nutrition; fertilization; saturation index

Published: September 30, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
JAROSCH KA, SANTNER J, PARVAGE MM, GERZABEK MH, ZEHETNER F, KIRCHMANN H. Four soil phosphorus (P) tests evaluated by plant P uptake and P balancing in the Ultuna long-term field experiment. Plant Soil Environ. 2018;64(9):441-447. doi: 10.17221/313/2018-PSE.
Download citation

References

  1. Amer F., Bouldin D.R., Black C.A., Duke F.R. (1955): Characterization of soil phosphorus by anion exchange resin adsorption and P 32-equilibration. Plant and Soil, 6: 391-408. Go to original source...
  2. Egnér H., Riehm H., Domingo W. (1960): Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungliga Lantbrukshögskolans Annaler, 26: 199-215.
  3. Frossard E., Demaria P., Sinaj S., Schärer M. (2014): A flowthrough reactor to assess potential phosphate release from agricultural soils. Geoderma, 219-220: 125-135. Go to original source...
  4. Houba V.J.G., Novozamsky I., van Dijk D. (1998): Certification of an air-dry soil for pH and extractable nutrients using one hundredth molar calcium chloride. Communications in Soil Science and Plant Analysis, 29: 1083-1090. Go to original source...
  5. Indiati R., Sharpley A.N. (1996): Release of soil phosphate by sequential extractions as a function of soil properties and added phosphorus. Communications in Soil Science and Plant Analysis, 27: 2147-2157. Go to original source...
  6. Jordan-Meille L., Rubaek G.H., Ehlert P.A.I., Genot V., Hofman G., Goulding K., Recknagel J., Provolo G., Barraclough P. (2012): An overview of fertilizer-P recommendations in Europe: Soil testing, calibration and fertilizer recommendations. Soil Use and Management, 28: 419-435. Go to original source...
  7. Kätterer T., Bolinder M.A., Andrén O., Kirchmann H., Menichetti L. (2011): Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems and Environment, 141: 184-192. Go to original source...
  8. Kirchmann H., Persson J., Carlgren K. (1994): The Ultuna longterm soil organic matter experiment, 1956-1991. Uppsala, Swedish University of Agricultural Sciences, Department of Soil Sciences, Reports and Dissertations 17.
  9. Kirchmann H., Pichlmayer F., Gerzabek M.H. (1996): Sulfur balances and sulfur-34 abundance in a long-term fertilizer experiment. Soil Science Society of America Journal, 60: 174-178. Go to original source...
  10. Kulhánek M., Balík J., Èerný J., Nedvìd V., Kotková B. (2007): The influence of different intensities of phosphorus fertilizing on available phosphorus contents in soils and uptake by plants. Plant, Soil and Environment, 53: 382-387. Go to original source...
  11. Lair G.J., Zehetner F., Khan Z.H., Gerzabek M.H. (2009): Phosphorus sorption-desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma, 149: 39-44. Go to original source...
  12. Mehlich A. (1984): Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409-1416. Go to original source...
  13. Menichetti L., Ekblad A., Kätterer T. (2015): Contribution of roots and amendments to soil carbon accumulation within the soil profile in a long-term field experiment in Sweden. Agriculture, Ecosystems and Environment, 200: 79-87. Go to original source...
  14. Menzies N.W., Kusumo B., Moody P.W. (2005): Assessment of P availability in heavily fertilized soils using the diffusive gradient in thin films (DGT) technique. Plant and Soil, 269: 1-9. Go to original source...
  15. Murphy J., Riley J.P. (1962): A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31-36. Go to original source...
  16. Nawara S., van Dael T., Merckx R., Amery F., Elsen A., Odeurs W., Vandendriessche H., McGrath S., Roisin C., Jouany C., Pellerin S., Denoroy P., Eichler-Löbermann B., Börjesson G., Goos P., Akkermans W., Smolders E. (2017): A comparison of soil tests for available phosphorus in long-term field experiments in Europe. European Journal of Soil Science, 68: 873-885. Go to original source...
  17. Oenema O., Kros H., de Vries W. (2003): Approaches and uncertainties in nutrient budgets: Implications for nutrient management and environmental policies. European Journal of Agronomy, 20: 3-16. Go to original source...
  18. Olsen S.R., Cole C., Watanabe F.S., Dean L. (1954): Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Washington, United States Department of Agriculture, Circular 939, 1-19.
  19. Otabbong E., Persson J., Iakimenko O., Sadovnikova L. (1997): The Ultuna long-term soil organic matter experiment. II. Phosphorus status and distribution in soils. Plant and Soil, 195: 17-23. Go to original source...
  20. R Development Core Team (2010): R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing.
  21. Rhoades J.D. (1996): Salinity: Electrical conductivity and total dissolved solids. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E. (eds.): Methods of Soil Analysis. Part 3 - Chemical Methods, 417-435. Go to original source...
  22. Santner J., Prohaska T., Luo J., Zhang H. (2010): Ferrihydrite containing gel for chemical imaging of labile phosphate species in sediments and soils using diffusive gradients in thin films. Analytical Chemistry, 82: 7668-7674. Go to original source... Go to PubMed...
  23. Schwertmann U. (1964): Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 105: 194-202. Go to original source...
  24. Sharpley A.N., Ahuja L.R., Yamamoto M., Menzel R.G. (1981): The kinetics of phosphorus desorption from soil. Soil Science Society of America Journal, 45: 493-496. Go to original source...
  25. Van der Paauw F. (1971): An effective water extraction method for the determination of plant-available soil phosphorus. Plant and Soil, 34: 467-481. Go to original source...
  26. Van der Zee S.E.A.T.M., Fokkink L.G.J., van Riemsdijk W.H. (1987): A new technique for assessment of reversibly adsorbed phosphate. Soil Science Society of America Journal, 51: 599-604. Go to original source...
  27. Wuenscher R., Unterfrauner H., Peticzka R., Zehetner F. (2015): A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment, 61: 86-96. Go to original source...
  28. Yli-Halla M., Schick J., Kratz S., Schnug E. (2016): Determination of plant available P in soil. In: Schnug E., De Kok L.J. (eds.): Phosphorus in Agriculture: 100% Zero. Dordrecht, Springer, 63-93. Go to original source...
  29. Zehetner F., Wuenscher R., Peticzka R., Unterfrauner H. (2018): Correlation of extractable soil phosphorus (P) with plant P uptake: 14 extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment, 64: 192-201. Go to original source...
  30. Zhang H., Davison W. (1995): Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Analytical Chemistry, 67: 3391-3400. Go to original source...
  31. Zhang H., Davison W., Gadi R., Kobayashi T. (1998): In situ measurement of dissolved phosphorus in natural waters using DGT. Analytica Chimica Acta, 370: 29-38. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.