Plant Soil Environ., 2020, 66(9):468-476 | DOI: 10.17221/223/2020-PSE
Effect of different soil and weather conditions on efficacy, selectivity and dissipation of herbicides in sunflowerOriginal Paper
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
Six sunflower herbicides were tested at two application rates (1N and 2N) on three locations (with different soil types) within three years (2015-2017). Efficacy of the tested herbicides on Chenopodium album increased with an increasing cation exchange capacity (CEC) of the soil. Efficacy of pendimethalin was 95%, flurochloridone and aclonifen 94%, dimethenamid-P 72%, pethoxamid 49% and S-metolachlor 47%. All tested herbicides injured sunflower on sandy soil (Regosol) which had the lowest CEC, especially in wet conditions (phytotoxicity 27% after 1N application rate). The highest phytotoxicity was recorded after the application of dimethenamid-P (19% at 1N and 45% at 2N application rate). Main symptoms of phytotoxicity were leaf deformations and necroses and the damage of growing tips, which led to destruction of some plants. Aclonifen, pethoxamid and S-metolachlor at 1N did not injure sunflower on the soil with the highest CEC (Chernozem) in any of the experimental years. Persistence of tested herbicides was significantly longer in Fluvisol (medium CEC) compared to Regosol and Chernozem. Dimethenamid-P showed the shortest persistence in Regosol and Chernozem. The majority of herbicides was detected in the soil layer 0-5 cm in all tested soils. Vertical transport of herbicides in soil was affected by the herbicide used, soil type and weather conditions. The highest vertical transport was recorded for dimethenamid-P and pethoxamid (4, resp. 6% of applied rate) in Regosol in the growing season with high precipitation.
Keywords: Helianthus annuus L.; environmental factor; soil condition; metabolic selectivity; weed control; leaching
Published: September 30, 2020 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Andr J., Kočárek M., Jursík M., Fendrychová V., Tichý L. (2017): Effect of adjuvants on the dissipation, efficacy and selectivity of three different pre-emergent sunflower herbicides. Plant, Soil and Environment, 63: 409-415.
Go to original source...
- Bedmar F., Daniel P.E., Costa J.L., Daniel G. (2011): Sorption of acetochlor, S-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina. Environmental Toxicology and Chemistry, 30: 1990-1996.
Go to original source...
Go to PubMed...
- Das T.K., Yaduraju N.T. (2012): The effects of combining modified sowing methods with herbicide mixtures on weed interference in wheat crops. International Journal of Pest Management, 58: 310-319.
Go to original source...
- De Prado R., Romera E., Jorrin J. (1993): Effects of chloroacetamides and phytosynthesis-inhibiting herbicides on growth and photosynthesis in sunflower (Helianthus annuus L.) and Amaranthus hybridus L. Weed Research, 33: 369-374.
Go to original source...
- Dhareesank A.R.M., Kobayashi K., Usui K. (2006): Residual phytotoxic activity of pethoxamid in soil and its concentration in soil water under different soil moisture conditions. Weed Biology and Management, 6: 50-54.
Go to original source...
- EPPO (2007): PP 1/63 (3) Weeds in sunflower. OEPP/EPPO Bulletin, 37: 52-55.
Go to original source...
- EPPO (2014): PP 1/135 (4) Phytotoxicity assessment. OEPP/EPPO Bulletin, 44: 265-273.
Go to original source...
- Erasmo E.A.L., Costa N.V., Peruzzo A.S., Barberato J. (2010): Effect of herbicides applied on sunflower crop in wetland soil. Planta Daninha, 28: 843-852.
Go to original source...
- Gannon T.W., Hixson A.C., Keller K.E., Weber J.B., Knezevic S.Z., Yelverton F.H. (2014): Soil properties influence saflufenacil phytotoxicity. Weed Research, 62: 657-663.
Go to original source...
- Godwin J., Norsworthy J.K., Scott R.C. (2018a): Weed control and selectivity of pethoxamid alone and in mixture as a delayed preemergence application to rice. Weed Technology, 32: 537- 543.
Go to original source...
- Godwin J., Norsworthy J.K., Scott R.C., Rice M. (2018b): Selectivity of very-long-chain fatty acid-inhibiting herbicides in rice as influenced by application timing and soil texture. Crop, Forage and Turfgrass Management, 4: 1-9.
Go to original source...
- Hurle K., Walker A. (1980): Persistence and its prediction. In: Hance K.A. (ed.): Interactions between Herbicides and the Soil. London, Academic Press, 83-122. ISBN-13: 978-0123238405
- Inoue M.H., Santana D.C., de Oliveira R.S.Jr., Clemente R.A., Dallacort R., Possamai A.C.S., Santana C.T.C., Pereira K.M. (2010): Leaching potential of herbicides used in cotton crop under soil column conditions. Planta Daninha, 28: 825-833.
Go to original source...
- Jursík M., Hamouzová K., Soukup J., Šuk J. (2016): Effect of nonwoven fabric cover on the efficacy and selectivity of pendimethalin in lettuce. Scientia Horticulturae, 200: 7-12.
Go to original source...
- Jursík M., Janků J., Holec J., Soukup J. (2008): Efficiency and selectivity of herbicide Merlin 750 WG (isoxaflutole) in relation to dose and precipitation after application. Journal of Plant Diseases and Protection, Special Issue 21: 551-556.
- Jursík M., Kočárek M., Hamouzová K., Soukup J., Venclová V. (2013): Effect of precipitation on the dissipation, efficacy and selectivity of three chloroacetamide herbicides in sunflower. Plant, Soil and Environment, 59: 175-182.
Go to original source...
- Jursík M., Soukup J., Holec J., Andr J. (2011): Important aspects of chemical weed control: ways of herbicide selectivity to crops. Listy Cukrovarnické a Řepařské, 127: 178-183.
- Jursík M., Soukup J., Holec J., Andr J., Hamouzová K. (2015): Efficacy and selectivity of pre-emergent sunflower herbicides under different soil moisture conditions. Plant Protection Science, 51: 214-222.
Go to original source...
- Jursík M., Šuk J., Kolářová M., Soukup J. (2019): Effect of irrigation and soil adjuvant on the efficacy and selectivity of pendimethalin and metazachlor in kohlrabi. Scientia Horticulturae, 246: 871-878.
Go to original source...
- Kerr G.W., Stahlman P.W., Dille J.A. (2004): Soil pH and cation exchange capacity affects sunflower tolerance to sulfentrazone. Weed Technology, 18: 243-247.
Go to original source...
- Kewat M.L., Pandey J., Kulshrestha G. (2001): Persistence of pendimethalin in soybean (Glycine max)-wheat (Triticum aestivum) sequence following pre-emergence application to soybean. Indian Journal of Agronomy, 46: 23-26.
Go to original source...
- Kočárek M., Artikov H., Voříšek K., Borůvka L. (2016): Pendimethalin degradation in soil and its interaction with soil microorganisms. Soil and Water Research, 11: 213-219.
Go to original source...
- Kočárek M., Kodešová R., Kozák J., Drábek O. (2010): Field study of chlorotoluron transport and its prediction by the BPS mathematical model. Soil and Water Research, 5: 153-160.
Go to original source...
- Kurtenbach M.E., Johnson E.N., Gulden R.H., Willenborg C.J. (2019): Tolerance of flax (Linum usitatissimum) to fluthiacet-methyl, pyroxasulfone, and topramezone. Weed Technology, 33: 509-517.
Go to original source...
- Lin H.T., Chen S.W., Shen C.J., Chu C. (2007): Dissipation of pendimethalin in the garlic (Allium sativum L.) under subtropical condition. Bulletin of Environmental Contamination and Toxicology, 79: 84-86.
Go to original source...
Go to PubMed...
- Meier U. (2018): Growth Stages of Mono- and Dicotyledonous Plants. BBCH-Monograph. Quedlinburg, Julius Kühn-Institut. ISBN: 978-3-95547-071-5
- Mueller T.C., Shaw D.R., Witt W.W. (1999): Relative dissipation of acetochlor, alachlor, metolachlor and SAN 582 from three surface soils. Weed Technology, 13: 341-346.
Go to original source...
- Nádasy E., Nádasy M., Nagy V. (2008): Effect of soil herbicides on development of sunflower hybrid. Cereal Research Communications, 36: 847-850.
- Olson B.L.S., Zollinger R.K., Thompson C.R., Peterson D., Jenks B., Moechnig M., Stahlman P. (2011): Pyroxasulfone with and without sulfentrazone in sunflower (Helianthus annuus). Weed Technology, 25: 217-221.
Go to original source...
- Pannacci E., Onofri A., Covarelli G. (2007): Biological activity, availability and duration of phytotoxicity for imazamox in four different soils of central Italy. Weed Research, 46: 243-250.
Go to original source...
- Pannacci E., Graziani F., Covarelli G. (2007): Use of herbicide mixtures for pre and post-emergence weed control in sunflower (Helianthus annuus). Crop Protection, 26: 1150-1157.
Go to original source...
- Renaud F.G., Brown C.D., Fryer C.J., Walker A. (2004): A lysimeter experiment to investigate temporal changes in the availability of pesticide residues for leaching. Environmental Pollution, 131: 81-91.
Go to original source...
Go to PubMed...
- Sadowski J., Kucharski M., Wujek B. (2012): Influence of soil type on metazachlor decay. Progress in Plant Protection, 52: 437-440.
- Shipitalo M.J., Edwards W.M., Dick W.A., Owens L. (1990): Initial storm effects on macropore transport of surface-applied chemicals in no-till soil. Soil Science Society of America Journal, 54: 1530-1536.
Go to original source...
- Si Y.B., Takagi K., Iwasaki A., Zhou D.M. (2009): Adsorption, desorption and dissipation of metolachlor in surface and subsurface soils. Pest Management Science, 65: 956-962.
Go to original source...
Go to PubMed...
- Sigua G.C., Isensee A.R., Sadeghi A.M. (1993): Influence of rainfall intensity and crop residue on leaching of atrazine through intact no-till soil cores. Soil Science, 156: 225-232.
Go to original source...
- Singh R.P., Verma S.K., Singh R.K. (2016): Effects of herbicides on growth and yield of Cicer arietinum L. under rainfed condition. Bangladesh Journal of Botany, 45: 305-311.
- Soni N., Leon R.G., Erickson J.E., Ferrell J.A., Silveira M.L. (2015): Biochar decreases atrazine and pendimethalin preemergence herbicidal activity. Weed Technology, 29: 359-366.
Go to original source...
- Steckel L.E., Simmons F.W., Sprague C.L. (2013): Soil factor effects on tolerance of two corn (Zea mays) hybrids to isoxaflutole plus flufenacet. Weed Technology, 17: 599-604.
Go to original source...
- Streibig J.C., Kudsk P., Jensen J.E. (1998): A general joint action model for herbicide mixtures. Pesticide Science, 53: 21-28.
Go to original source...
- Tsiropoulos N.G., Miliadis G.E. (1998): Field persistence studies on pendimethalin residues in onions and soil after herbicide postemergence application in onion cultivation. Journal of Agricultural and Food Chemistry, 46: 291-295.
Go to original source...
Go to PubMed...
- Vasilakoglou I.B., Eleftherohorinos I.G., Dhima K.B. (2001): Activity, adsorption and mobility of three acetanilide and two new amide herbicides. Weed Research, 41: 535-546.
Go to original source...
- Vischetti C., Marucchini C., Leita L., Cantone P., Danuso F., Giovanardy R. (2002): Behaviour of two sunflower herbicides (metobromuron, aclonifen) in soil. European Journal of Agronomy, 16: 231-238.
Go to original source...
- Wanjari R.H., Yadurju N.T., Ahuja K.N. (2001): Critical period of crop-weed competition in rainy-season sunflower (Helianthus annuus). Indian Journal of Agronomy, 46: 309-313.
Go to original source...
- Wischmeier W.H., Mannering J.V. (1969): Relation of soil properties to its erodibility. Soil Science Society of America Journal, 33: 131-137.
Go to original source...
- Zanatta J.F., Procópio S.O., Manica R., Pauletto E.A., Cargnelutti Filho A., Vargas L., Sganzerla D.C., Rosenthal M.D.A., Pinto J.J.O. (2008): Soil water contents and fomesafen efficacy in controlling Amaranthus hybridus. Planta Daninha, 26: 143-155.
Go to original source...
- Ziska L.H., Dukes J.S. (2011): Weed Biology and Climate Change. Ames, Willey-Blackwell. ISBN: 9780813814179
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.