Plant Soil Environ., 2021, 67(3):137-146 | DOI: 10.17221/615/2020-PSE

Effect of tillage systems on energy input and energy efficiency for sugar beet and soybean under Pannonian climate conditionsOriginal Paper

Gerhard Moitzi ORCID...*,1, Reinhard W. Neugschwandtner2, Hans-Peter Kaul2, Helmut Wagentristl1
1 Experimental Farm Groß-Enzersdorf, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Groß-Enzersdorf, Austria
2 Institute of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria

Sustainable cropping systems require efficient usage of fossil energy. This study performed on a long-term field experiment in the Pannonian Basis investigated the energy efficiency of four tillage systems (mouldboard plough (MP), deep conservation tillage (CTd), shallow conservation tillage (CTs) and no-tillage (NT)) for sugar beet and soybean production, taking fuel consumption, total energy input (made up of both direct and indirect inputs), crop yield, energy output, net-energy output, energy intensity and energy use efficiency into account. The input rates of fertiliser, chemical plant protection, and seeds were set constant across years; whereas measured values of fuel consumption were used for all tillage treatments. NT required a considerably lower energy input than MP and CTd as no fuel is needed for tillage and just slightly more fuel for additional spraying of glyphosate. Anyhow, the energy efficiency parameters did not differ between tillage treatments, as theses parameters were mainly determined by energy output, which was considerably higher than the energy input. However, year effects on the energy efficiency were observed for both crops. Nitrogen fertilisation and diesel fuel consumption were identified as the most energy-intensive inputs. Consequently, the energy input for sugar beet was higher than that for soybean, which was identified as a low-input crop. But sugar beet attained a more than 4 times higher net-energy output, a 2.5 times higher energy use efficiency, and an energy intensity for yield production of less than 3 times those of soybean.

Keywords: plant production; energy analysis; energy efficiency indicators; soil tillage operation; Pannonian basin

Published: March 31, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Moitzi G, Neugschwandtner RW, Kaul H, Wagentristl H. Effect of tillage systems on energy input and energy efficiency for sugar beet and soybean under Pannonian climate conditions. Plant Soil Environ. 2021;67(3):137-146. doi: 10.17221/615/2020-PSE.
Download citation

References

  1. Alluvione F., Moretti B., Sacco D., Grignani C. (2011): EUE (energy use efficiency) of cropping systems for a sustainable agriculture. Energy, 36: 4468-4481. Go to original source...
  2. Arrieta E.M., Cuchietti A., Cabrol D., González A.D. (2018): Greenhouse gas emissions and energy efficiencies for soybeans and maize cultivated in different agronomic zones: a case study of Argentina. Science of the Total Environment, 625: 199-208. Go to original source... Go to PubMed...
  3. Arvidsson J. (2010): Energy use efficiency in different tillage systems for winter wheat on a clay and silt loam in Sweden. European Journal of Agronomy, 33: 250-256. Go to original source...
  4. Biedermann G. (2009): Kumulierter Energieaufwand (KEA) der Weizenproduktion bei verschiedenen Produktionssystemen (konventionell und ökologisch) und verschiedenen Bodenbearbeitungssystemen (Pflug, Mulchsaat, Direktsaat). [Master Thesis.] Vienna, University of Natural Resources and Life Sciences.
  5. Bodner G., Nakhforoosh A., Kaul H.-P. (2015): Management of crop water under drought: a review. Agronomy for Sustainable Development, 35: 401-442. Go to original source...
  6. Brunotte J., Sommer C. (2009): Konservierende Bodenbearbeitung aus Sicht der Wissenschaft. In: Intelligenter Pflanzenbau., 3. Auflage. Amazonen-Werke, Hasbergen-Gaste, 110-144.
  7. CIGR (1999): Handbook of Agricultural Engineering - Volume V: Energy and Biomass Engineering. St. Joseph, American Society of Agricultural and Biological Engineers. Available at: http://cigr.org/Resources/handbook.php (accessed 15 March 2019)
  8. Dal Ferro C., Zanin G., Borin M. (2017): Crop yield and energy use in organic and conventional farming: a case study in north-east Italy. European Journal of Agronomy, 86: 37-47. Go to original source...
  9. Deike S., Pallutt B., Melander B., Strassemeyer J., Christen O. (2008): Long-term productivity and environmental effects of arable farming as affected by crop rotation, soil tillage intensity and strategy of pesticide use: a case study of two long-term field experiments in Germany and Denmark. European Journal of Agronomy, 29: 191-199. Go to original source...
  10. Green M.B. (1987): Energy in pesticide manufacture, distribution and use. In: Helsel Z.R. (ed.): Energy in Plant Nutrition and Pest Control. Energy in World Agriculture, Vol. 2. Amsterdam, Elsevier, 165-195. ISBN-13: 978-0444427533
  11. Hoeppner J.W., Entz M.H., McConkey B.G., Zentner R.P., Nagy C.N. (2005): Energy use and efficiency in two Canadian organic and conventional crop production systems. Renewable Agricul
  12. Hülsbergen K.-J., Feil B., Biermann S., Rathke G.-W., Kalk W.-D., Diepenbrock W. (2001): A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agriculture, Ecosystems and Environment, 86: 303-321. Go to original source...
  13. Ide G., Hofman G., Ossemerct C., Van Ruymbeke M. (1987): Subsoiling: time dependency of its beneficial effects. Soil and Tillage Research, 10: 212-223. Go to original source...
  14. Jenssen T.K., Kongshaug G. (2003): Energy consumption and greenhouse gas emissions in fertiliser production. In: Proceedings of the International Fertiliser Society, No. 509, London, International Fertiliser Society.
  15. Lin H.-C., Huber J.A., Gerl G., Hülsbergen K.-J. (2017): Effects of changing farm management and farm structure on energy balance and energy-use efficiency - a case study of organic and conventional farming systems in southern Germany. European Journal of Agronomy, 82: 242-253. Go to original source...
  16. Martínez I., Chervet A., Weisskopf P., Sturny W., Etana A., Stettler M., Forkman J., Keller T. (2016): Two decades of no-till in the Oberacker long-term field experiment: Part I. Crop yield, soil organic carbon and nutrient distribution in the soil profile. Soil and Tillage Research, 163: 141-151. Go to original source...
  17. McLaughlin N.B., Drury C.F., Reynolds W.D., Yang X.M., Li Y.X., Welacky T.W., Stewart G. (2008): Energy inputs for conservation primary tillage implements in a clay loam soil. Transactions of the ASABE, 51: 1153-1663. Go to original source...
  18. Moitzi G., Szalay T., Schüller M., Wagentristl H., Refenner K., Weingartmann H., Liebhard P., Boxberger J., Gronauer A. (2013): Effects of tillage systems and mechanization on work time, fuel and energy consumption for cereal cropping in Austria. Agricultural Engineering International: CIGR Journal, 15: 94-101.
  19. Moitzi G., Thünauer G., Robier J., Gronauer A. (2015): Energieeinsatz und Energieeffizienz in der Körnermaisproduktion bei unterschiedlicher Stickstoffdüngung in der Südsteiermark. Die Bodenkultur. Journal for Land Management, Food and Environment, 66: 25-37.
  20. Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. (2019): Energy efficiency of winter wheat in a long-term tillage experiment under Pannonian climate conditions. European Journal of Agronomy, 103: 24-31. Go to original source...
  21. Moitzi G., Spiegel H., Sandén T., Vuolo F., Essl L., Neugschwandtner R.W., Wagentristl H. (2020a): Energieeinsatz und Energieeffizienz von Winterweizen bei unterschiedlicher mineralischer Stickstoffdüngung im Marchfeld. Journal for Land Management, Food and Environment, 71: 55-67. Go to original source...
  22. Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. (2020b): Efficiency of mineral nitrogen fertilization in winter wheat under Pannonian climate conditions. Agriculture, 10: 541. Go to original source...
  23. Neugschwandtner R.W., Kaul H.-P., Liebhard P., Wagentristl H. (2015): Winter wheat yields in a long-term tillage experiment under Pannonian climate conditions. Plant, Soil and Environment, 61: 145-150. Go to original source...
  24. ÖKL (2019): ÖKL-Richtwerte für die Maschinenselbstkosten 2019. Wien, Österreichisches Kuratorium für Landtechnik und Landentwicklung (ÖKL).
  25. Pittelkow C.M., Liang X., Linquist B.A., Van Groenigen K.J., Lee J., Lundy M.E., Van Gestelm N., Six J., Venterea R.T., Van Kessel C. (2015): Productivity limits and potentials of the principles of conservation agriculture. Nature, 517: 365-368. Go to original source... Go to PubMed...
  26. Poje T. (1998): Energy used by the work of tractor equipped with implements for different soil tillage systems. In: Conference Agricultural Engineering. VDI-Berichte 1449, VDI-Verlag, Düsseldorf, 105-110.
  27. Rathke G.-W., Wienhold B.J., Wilhelm W.W., Diepenbrock W. (2007): Tillage and rotation effect on corn-soybean energy balances in eastern Nebraska. Soil and Tillage Research, 97: 60-70. Go to original source...
  28. Rusu T. (2014): Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage. International Soil Water Conservation Research, 2: 42-49. Go to original source...
  29. Saling P., Kölsch D. (2008): Ökobilanzierung: Energieverbräuche und CO2-Emissionen von Pflanzenschutzmitteln. In: Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL), KTBL-Schrift 463, Energieeffiziente Landwirtschaft, Darmstadt, 65-71.
  30. Sartori L., Basso B., Bertocco M., Oliviero G. (2005): Energy use and economic evaluation of a three year crop rotation for conservation and organic farming in NE Italy. Biosystems Engineering, 91: 245-256. Go to original source...
  31. Sørensen C.G., Halberg N., Oudshoorn F.W., Petersen B.M., Dalgaard R. (2014): Energy inputs and GHG emissions of tillage systems. Biosystems Engineering, 120: 2-14. Go to original source...
  32. Szalay T., Moitzi G., Weingartmann H., Liebhard P. (2015): Einfluss unterschiedlicher Bodenbearbeitungssysteme auf Kraftstoffverbrauch und Arbeitszeitbedarf für den Winterweizenanbau im semiariden Produktionsgebiet. Die Bodenkultur: Journal for Land Management, Food and Environment, 66: 39-48.
  33. Tabatabaeefar A., Emamzadeh H., Ghasemi-Varnamkhasti M., Rahimizadeh R., Karimi M. (2009): Comparison of energy of tillage systems in wheat production. Energy, 34: 41-45. Go to original source...
  34. Thaler S., Eitzinger J., Trnka M., Dubrovsky M. (2012): Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. Journal of Agricultural Science, 150: 537-555. Go to original source...
  35. Zentner R.P., Lafond G.P., Derksen D.A., Nagy C.N., Wall D.D., May W.E. (2004): Effects of tillage method and crop rotation on nonrenewable energy use efficiency for a thin Black Chernozem in the Canadian Prairies. Soil and Tillage Research, 77: 125-136. Go to original source...
  36. Zhang L., Feike T., Holst J., Hoffmann C., Doluschitz R. (2015): Comparison of energy consumption and economic performance of organic and conventional soybean production - a case study from Jilin province, China. Journal of Integrative Agriculture, 14: 1561-1572. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.