Plant Soil Environ., 2021, 67(7):408-416 | DOI: 10.17221/661/2020-PSE

Effect of drought and waterlogging on saccharides and amino acids content in potato tubersOriginal Paper

Matyáš Orsák1, Zora Kotíková1, František Hnilička2, Jaromír Lachman ORCID...*,1
1 Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Prague, Czech Republic
2 Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Prague, Czech Republic

The study was focused on the effect of drought and waterlogging stresses in two-year pot experiments in the peat substrate on the content of glucose, fructose and sucrose and free amino acids in potato tubers of four cultivars (yellow-fleshed Laura, Marabel, Milva and blue-fleshed Valfi) after 71 days of exposure to stresses conditions (BBCH 909). Drought and waterlogging increased levels of fructose, glucose, and sucrose in three potato cultivars except for cv. Laura. Drought stress increased l-proline (+248.4%), l-hydroxyproline (+135.3%), l-arginine (+29.97%), l-glutamic acid (+29.09%) and l-leucine (+22.58%) contents in all analysed cultivars. Moreover, the high effect of drought stress on an increase of l-phenylalanine, l-histidine, l-threonine, and total free amino acids content of the cvs. Laura, Valfi and Marabel has been observed. A comparison of the effects of drought and waterlogging stresses on the content of total amino acids showed an increase under drought and a decrease under waterlogging conditions. On average, of all cultivars, waterlogging stress caused an increase of l-tyrosine content, whereas drought stress decrease. In addition, drought stress caused a significant increase of l-proline in all cultivars while waterlogging its decrease. Obtained results confirmed different responses of susceptible or resistant cultivars to abiotic stresses.

Keywords: Solanum tuberosum L.; long-term abiotic stresses; soluble sugars; protein building units

Published: July 31, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Orsák M, Kotíková Z, Hnilička F, Lachman J. Effect of drought and waterlogging on saccharides and amino acids content in potato tubers. Plant Soil Environ. 2021;67(7):408-416. doi: 10.17221/661/2020-PSE.
Download citation

References

  1. Bandurska H., Niedziela J., Pietrowska-Borek M., Nuc K., Chadzinikolau T., Radzikowska D. (2017): Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiology and Biochemistry, 118: 427-437. Go to original source... Go to PubMed...
  2. Bündig C., Vu T.H., Meise P., Seddig S., Schum A., Winkelmann T. (2017): Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L.) as revealed by an in vitro screening: role of proline, osmotic adjustment and drought response in pot trials. Journal of Agronomy and Crop Science, 203: 206-218. Go to original source...
  3. Ezekiel R., Singh N., Sharma S., Kaur A. (2013): Beneficial phytochemicals in potato - a review. Food Research International, 50: 487-496. Go to original source...
  4. Häusler R.E., Ludewig F., Krueger S. (2014): Amino acids - a life between metabolism and signaling. Plant Science, 229: 225-237. Go to original source... Go to PubMed...
  5. Hildebrandt T.M., Nunes Nesi A., Araújo W.R., Braun H.-P. (2015): Amino acid catabolism in plants. Molecular Plant, 8: 1563-1579. Go to original source... Go to PubMed...
  6. Hirut B., Shimelis H., Fentahun M., Bonierbale M., Gastelo M., Asfaw A. (2017): Combining ability of highland tropic adapted potato for tuber yield and yield components under drought. PLoS One, 12: e0181541. Go to original source... Go to PubMed...
  7. Iqbal N., Umar S., Khan N.A., Khan M.I.R. (2014): A new perspective of new phytohormones in salinity tolerance: regulation of proline metabolism. Environmental and Experimental Botany, 100: 34-42. Go to original source...
  8. Joshi V., Joung J.G., Fei Z.J., Jander G. (2010): Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids, 39: 933-947. Go to original source... Go to PubMed...
  9. Krasensky J., Jonak C. (2012): Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63: 1593-1608. Go to original source... Go to PubMed...
  10. Lehmann T., Pollmann S. (2009): Gene expression and characterization of a stress-induced tyrosine decarboxylase from Arabidopsis thaliana. FEBS Letters, 583: 1895-1900. Go to original source... Go to PubMed...
  11. Maghsoodi M., Razmjoo J., Gheysari M. (2017): Application of biochemical markers for the assessment of drought tolerance in alfalfa (Medicago sativa L.) cultivars. Grassland Science, 63: 3-14. Go to original source...
  12. Monneveux P., Ramírez D., Pino M.-T. (2013): Drought tolerance in potato (S. tuberosum L.). Can we learn from drought tolerance research in cereals? Plant Science, 205-206: 76-86. Go to original source... Go to PubMed...
  13. Muttucumaru N., Powers S.J., Elmore S.J., Mottram D.S., Halford N.G. (2015): Effects of water availability on free amino acids, sugars, and acrylamide-forming potential in potato. Journal of Agricultural and Food Chemistry, 63: 2566-2575. Go to original source... Go to PubMed...
  14. Obata T., Fernie A.R. (2012): The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69: 3225-3243. Go to original source... Go to PubMed...
  15. Orsák M., Kotíková Z., Hnilička F., Lachman J., Stanovič R. (2020): Effect of drought and waterlogging on hydrophilic antioxidants and their activity in potato tubers. Plant, Soil and Environment, 66: 128-134. Go to original source...
  16. Pathirana I., Thavarajah P., Siva N., Wickramasinghe A.N.K., Smith P., Thavarajah D. (2017): Moisture deficit effects on kale (Brassica oleracea L. var. acephala) biomass, mineral, and low molecular weight carbohydrate concentrations. Scientia Horticulturae, 226: 216-222. Go to original source...
  17. Pavlíková D., Zemanová V., Procházková D., Pavlík M., Száková J., Wilhelmová N. (2014): The long-term effect of zinc soil contamination on selected free amino acids playing an important role in plant adaptation to stress and senescence. Ecotoxicology and Environmental Safety, 100: 166-170. Go to original source... Go to PubMed...
  18. Per T.S., Khan N.A., Reddy P.S., Masood A., Hasanuzzaman M., Khan M.I.R., Anjum N.A. (2017): Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry, 115: 126-140. Go to original source... Go to PubMed...
  19. Sami F., Yusuf M., Faizan M., Faraz A., Hayat S. (2016): Role of sugars under abiotic stress. Plant Physiology and Biochemistry, 109: 54-61. Go to original source... Go to PubMed...
  20. Szabados L., Savouré A. (2009): Proline: a multifunctional amino acid. Trends in Plant Science, 15: 89-97. Go to original source... Go to PubMed...
  21. Schafleitner R., Gutierrez R., Espino R., Gaudin A., Pérez J., Martínez M., Domínguez A., Tincopa L., Alvaraqdo C., Numberto G., Bonierbale M. (2007): Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Research, 50: 71-85. Go to original source...
  22. Song Q.H., Liu C.Y., Bachir D.G., Chen L., Hu Y.G. (2017): Drought resistance of new synthetic hexaploid wheat accessions evaluated by multiple traits and antioxidant enzyme activity. Field Crops Research, 210: 91-103. Go to original source...
  23. Świędrych A., Lorenc-Kukuła K., Skirycz A., Szopa J. (2004): The catecholamine biosynthesis route in potato is affected by stress. Plant Physiology and Biochemistry, 42: 593-600. Go to original source... Go to PubMed...
  24. Wegener C.B., Jürgens H.-U., Jansen G. (2017): Drought stress affects bioactive compounds in potatoes (Solanum tuberosum L.) relevant to non-communicable diseases. Functional Foods in Health and Disease, 7: 17-35. Go to original source...
  25. Wu P., Wu C.B., Zhou B.Y. (2017): Drought stress induces flowering and enhances carbohydrate accumulation in Averrhoa carambola. Horticultural Plant Journal, 3: 60-66. Go to original source...
  26. Xia H.Q., Xu T., Zhang J., Shen K., Li Z.Y., Liu J.G. (2020): Droughtinduced responses of nitrogen metabolism in Ipomoea batatas. Plants, 9: 1341. Go to original source... Go to PubMed...
  27. Yoon Y.-E., Kuppusamy S., Cho K.M., Kim P.J., Kwack Y.-B., Lee Y.B. (2017): Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea). Food Chemistry, 215: 185-192. Go to original source... Go to PubMed...
  28. Zhu Q.D., Wang L., Dong Q.L., Chang S., Wen K.X., Jia S.H., Chu Z.L., Wang H.M., Gao P., Zhao H.P., Han S.C., Wang Y.D. (2017): FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots. Journal of Plant Physiology, 215: 65-72. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.