Plant Soil Environ., 2021, 67(9):524-532 | DOI: 10.17221/231/2021-PSE

Effects of irrigation schemes on the components and physicochemical properties of starch in waxy wheat linesOriginal Paper

Zhongmin Dai ORCID...*,1, Dongcheng Liu2, Shengnan Qin1, Rugang Wu3, Yan Li1, Juan Liu1, Yuangang Zhu1, Guangfeng Chen1
1 Dezhou University, Dezhou, Shandong, P.R. China
2 Hebei Agricultural University, Baoding, Hebei, P.R. China
3 Research Institute of Agricultural Sciences, Dezhou, Shandong, P.R. China

The waxy wheat shows special starch quality due to low amylose content. However, less information is available concerning the physicochemical properties of starch in different waxy wheat under different irrigation. In this study, two wheat near-isogenic lines (NILs) and a normal wheat cultivar were used to investigate the contents, size distribution and crystallinity of starch by biochemical methods, laser-diffraction and X-ray diffraction analysis. The amylose content in wheat grains was the lowest in waxy wheat lines, SJZ8-N, followed by the partly waxy wheat lines, SJZ8-P, and the highest in the normal wheat, SJZ8, with significant differences among wheat lines. Waxy wheat starch had more B-type granules and a higher degree of crystallinity than normal wheat starch, with the order as SJZ8-N > SJZ8-P > SJZ8. When compared with the conventional and water-saving irrigation, the rainfed treatment showed the lowest starch content, amylose content (except SJZ8-N), amylopectin content and relative crystallinity in the three wheat lines indicating that water deficiency was not benefited starch accumulation and crystal formation in wheat grains. It was concluded that (1) wheat lines not only differed in amylose content but also in size distribution and crystallinity of starch; (2) irrigation markedly influenced the physicochemical characteristics of wheat starch; therefore, the irrigation schemes could be adjusted to achieve high-quality wheat production.

Keywords: Triticum aestivum L.; endosperm; water deficit; distribution of granule size; polysaccharide

Published: September 30, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Dai Z, Liu D, Qin S, Wu R, Li Y, Liu J, et al.. Effects of irrigation schemes on the components and physicochemical properties of starch in waxy wheat lines. Plant Soil Environ. 2021;67(9):524-532. doi: 10.17221/231/2021-PSE.
Download citation

References

  1. Ai Y., Jane J. (2016): Starch: structure, property, and determination. In: Caballero B., Finglas P., Toldrá F. (eds.): Encyclopedia of Food and Health. 1st Edition. Cambridge, Academic Press, 165-174. ISBN: 9780123849533 Go to original source...
  2. Dai Z.M., Xu T.S., Li X.G., Zhang H., Li Y., Zhang X.L. (2016): Effect of different water supply on accumulation of high molecular weight glutenin subunits and glutenin macropolymers in nearisogenic wheat lines. Plant, Soil and Environment, 62: 53-59. Go to original source...
  3. Hayakawa K., Tanaka K., Nakamura T., Endo S., Hoshino T. (1997): Quality characteristics of waxy hexaploid wheat (Triticum aestivum L.): properties of starch gelatinization and retrogradation. Cereal Chemistry, 74: 576-580. Go to original source...
  4. Chen P., Zhang X., Zhao B., Xiao N., Li Y.Z. (2015): Morphological features and internal structure of waxy wheat starch. Science and Technology of Food Industry, 36: 70-76.
  5. Jaksics E., Paszerbovics B., Egri B., Rakszegi M., Tremmel-Bede K., Vida G., Gergely S., Németh R., Tömösközi S. (2020): Complex rheological characterization of normal, waxy and high-amylose wheat lines. Journal of Cereal Science, 93: 1-11. Go to original source...
  6. Jung T.H., Kim J.Y., Baik B.K., Park C.S. (2015): Physicochemical and thermal characteristics of starch isolated from a waxy wheat genotype exhibiting partial expression of Wx proteins. Cereal Chemistry, 92: 14-21. Go to original source...
  7. Kim H.-S., Huber K.C. (2010): Physicochemical properties and amylopectin fine structures of A- and B-type granules of waxy and normal soft wheat starch. Journal of Cereal Science, 51: 256-264. Go to original source...
  8. Kozlov S.S., Krivandin A.V., Shatalova O.V., Noda T., Bertoft E., Fornal J., Yuryev V.P. (2007): Structure of starches extracted from near-isogenic wheat lines. Journal of Thermal Analysis and Calorimetry, 87: 575-584. Go to original source...
  9. Li C.Y., Zhou D.D., Fan T., Wang M.Y., Zhu M., Ding J.F., Zhu X.K., Guo W.S., Shi Y.C. (2020): Structure and physicochemical properties of two waxy wheat starches. Food Chemistry, 318: 126492. Go to original source... Go to PubMed...
  10. Liu X.W., Zhang M., Zhang Y.C., Yang M., Song X.J., Cai R.G. (2017): Effects of shading at grain filling stages on starch components and physicochemical properties of the waxy wheat and non-waxy wheat. Scientia Agricultura Sinica, 50: 1582-1593.
  11. Peng M., Gao M., Abdel-Aal E.-S.M., Hucl P., Chibbar R.N. (1999): Separation and characterization of A- and B-type starch granules in wheat endosperm. Cereal Chemistry, 76: 375-379. Go to original source...
  12. Purna S.K.G., Shi Y.C., Guan L., Wilson J.D., Graybosch R.A. (2015): Factors governing pasting properties of waxy wheat flours. Cereal Chemistry, 92: 529-535. Go to original source...
  13. Shevkani K., Singh N., Bajaj R., Kaur A. (2016): Wheat starch production, structure, functionality and applications - a review. International Journal of Food Science and Technology, 52: 38-58. Go to original source...
  14. Singh S., Singh G., Singh P., Singh N. (2008): Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties. Food Chemistry, 108: 130-139. Go to original source...
  15. Song X.J., Zhang M., Wu X.P., Zhao C., Shi J., Zhang Y.C., Liu X.W., Cai R.G. (2017): Effects of drought stress on wheat endosperm starch structure and physicochemical properties of different varieties. Scientia Agricultura Sinica, 50: 260-271.
  16. Tong J.Y., Wang S.J., He Z.H., Zhang Y. (2021): Effects of reduced nitrogen fertilization and irrigation on structure and physicochemical properties of starch in two bread wheat cultivars. Agriculture, 11: 26. Go to original source...
  17. Wang S.J., Wang J.R., Zhang W., Li C.L., Yu J.L., Wang S. (2015): Molecular order and functional properties of starches from three waxy wheat varieties grown in China. Food Chemistry, 181: 43-50. Go to original source... Go to PubMed...
  18. Xia J., Zhu D., Chang H.M., Yan X., Yan Y.M. (2020): Effects of water-deficit and high-nitrogen treatments on wheat resistant starch crystalline structure and physicochemical properties. Carbohydrate Polymers, 234: 115905. Go to original source... Go to PubMed...
  19. Zadoks J.C., Chang T.T., Konzak C.F. (1974): A decimal code for the growth stages of cereals. Weed Research, 14: 415-421. Go to original source...
  20. Zhang H.X., Zhang W., Xu C.Z., Zhou X. (2013): Morphological features and physicochemical properties of waxy wheat starch. International Journal of Biological Macromolecules, 62: 304- 309. Go to original source... Go to PubMed...
  21. Zhong Y.X., Li Y., Zhong J.W., Shi Z.Q., Cai J., Wang X., Zhou Q., Cao W.X., Dai T.B., Jiang D. (2016): Starch granule size distribution in wheat endosperm indirectly correlates to pasting property indicated by near-isogenic lines with different null-waxy alleles. Starch - Staerke, 69: 1-11. Go to original source...
  22. Zhou Q., Huang M., Huang X., Liu J., Wang X., Cai J., Dai T.B., Cao W.X., Jiang D. (2018): Effect of post-anthesis waterlogging on biosynthesis and granule size distribution of starch in wheat grains. Plant Physiology and Biochemistry, 132: 222-228. Go to original source... Go to PubMed...
  23. Zi Y., Ding J.F., Song J.M., Humphreys G., Peng Y.X., Li C.Y., Zhu X., Guo W.S. (2018): Grain yield, starch content and activities of key enzymes of waxy and non-waxy wheat (Triticum aestivum L.). Scientific Reports, 8: 4548. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.