Plant Soil Environ., 2022, 68(5):237-244 | DOI: 10.17221/40/2022-PSE
Soil solution pH can affect the response of the common bean (Phaseolus vulgaris L.) to mesotrione residuesOriginal Paper
- 1 Department of Weed Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- 2 Department of Animal Nutrition, Division for Animal Sciences, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- 3 Department of Plant Nutrition, Division for Agroecology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
Soil pH can affect the adsorption of mesotrione and exacerbate crop injury under non-acidic conditions. Soil samples collected from the same location were irrigated with water solutions of pH 7.5, 6.5, 5.5, and 4.5 and treated with 72, 36, 24, 18, 9, 4.5, 2.3, and 1.1 g a.i. (active ingredient) of mesotrione/ha. Bean growth was monitored over 28 days. Soil pH solution did not influence the effect of mesotrione on plant fresh weight, while herbicide-induced visual injury and reduction in carotenoid content were significantly mitigated under acidic conditions. The lowest rate (1.1 g a.i./ha) applied in slightly acidic soil (pH 6.5) caused visual injury of 45% 28 days after treatment, while visual injuries on plants grown in soils with pH 4.5 were only 20%. Further, bean plants grown at pH 4.5 showed only 3.3% lower carotenoid content compared to control plants since for those grown in a slightly alkaline environment (pH 7.5) reduction of this pigment was 35.5%. The mean effective dose (ED50 ± standard error) of mesotrione for inhibition of carotenoids were 5.25 ± 0.61 g a.i./ha at pH 7.5, 9.57 ± 0.74 g a.i./ha at pH 6.5, 13.07 ± 0.91 g a.i./ha at pH 5.5, and 14.98 ± 0.94 g a.i./ha at pH 4.5. Results indicate that the common bean is highly susceptible to the presence of mesotrione residue and that this sensitivity strongly depends on soil pH solution.
Keywords: phytotoxicity; crop rotation; dose-response; triketones; spectrophotometry; carotenoid inhibition
Published: May 15, 2022 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Barchanska H., Kluza A., Krajczewska K., Maj J. (2015): Degradation study of mesotrione and other triketone herbicides on soils and sediments. Journal of Soils and Sediments, 16: 125-133.
Go to original source...
- Boesten J.J.T.I. (1993): Bioavailability of organic chemicals in soil related to their concentration in the liquid phase: a review. Science of The Total Environment, 134: 397-407.
Go to original source...
- Carles L., Joly M., Joly P. (2017): Mesotrione herbicide: efficiency, effects, and fate in the environment after 15 years of agricultural use. CLEAN - Soil, Air, Water, 45: 1700011.
Go to original source...
- Chaabane H., Vulliet E., Calvayrac C., Coste C.-M., Cooper J.-F. (2008): Behaviour of sulcotrione and mesotrione in two soils. Pest Management Science, 64: 86-93.
Go to original source...
Go to PubMed...
- Chen L., Song F.R., Liu Z.Q., Zheng Z., Xing J.P., Liu S.Y. (2012): Multi-residue method for fast determination of pesticide residues in plants used in traditional chinese medicine by ultra-highperformance liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography A, 1225: 132-140.
Go to original source...
Go to PubMed...
- Dyson J.S., Beulke S., Brown C.D., Lane M.C.G. (2002): Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications. Journal of Environmental Quality, 31: 613-618.
Go to original source...
Go to PubMed...
- Đurović R. (2011): The processes that determine the fate of pesticides in soil. Pesticidi i Fitomedicina, 26: 9-22.
Go to original source...
- EPPO (2014): European and Mediterranean Plant Protection Organization. PP 1/135 (4) Phytotoxicity Assessment. Bulletin OEPP/ EPPO Bulletin, 44: 265-273.
Go to original source...
- Felix J., Doohan D.J., Bruins D. (2007): Differential vegetable crop responses to mesotrione soil residues a year after application. Crop Protection, 26: 1395-1403.
Go to original source...
- Goršić M., Barić K., Galzina N., Šćepanović M., Ostojić Z. (2008): Weed control in maize with new herbicide topramezone. Cereal Research Communications, 36: 1627-1630.
- Heap (2022): I. The International Herbicide-Resistant Weed Database. Available at: www.weedscience.org (accessed on January 14, 2022)
- Holm G. (1954): Chlorophyll mutations in barley. Acta Agriculturae Scandinavica, 4: 457-471.
Go to original source...
- Jovanović-Radovanov K. (2011): Susceptibility of cultivated plants to residual action of imazethapyr and clomazone. [PhD thesis] Beograd, University of Belgrade. (In Serbian)
- Lehman R.G., Miller J.R., Fontaine D.D., Laskowski D.A., Hunter J.H., Cordes R.C. (1992): Degradation of a sulfonamide herbicide as a function of soil sorption. Weed Research, 32: 197-205.
Go to original source...
- Mitchell G., Bartlett D.W., Fraser T.E.M., Hawkes T.R., Holt D.C., Townson J.K., Wichert R.A. (2001): Mesotrione: a new selective herbicide for use in maize. Pest Management Science, 57: 120-128.
Go to original source...
- Pang N., Wang T.L., Hu J., Dong B.Z. (2016): Field evaluation and determination of four herbicides in a wheat ecosystem by a simple and versatile QuEChERS method with liquid chromatography-tandem mass spectrometry. Toxicological and Environmental Chemistry, 99: 376-389.
Go to original source...
- Pintar A. (2020a): A bioassay method for detection mesotrione residues in soils with different physico-chemical properties. Dissertation. Zagreb, Faculty of Agriculture. Available at: https://urn.nsk.hr/urn:nbn:hr:204:157287
- Pintar A., Stipičević S., Lakić J., Barić K. (2020b): Phytotoxicity of mesotrione residues on sugar beet (Beta vulgaris L.) in agricultural soils differing in adsorption affinity. Sugar Tech, 22: 137-142.
Go to original source...
- Pintar A., Stipicevic S., Svecnjak Z., Baric K., Lakic J., Sraka M. (2020c): Crop sensitivity to mesotrione residues in two soils: field and laboratory bioassay. Chilean Journal of Agricultural Research, 80: 496-504.
Go to original source...
- Pintar A., Svečnjak Z., Lakić J., Magdić I., Brzoja D., Barić K. (2021): The susceptibility of pea (Pisum sativum L.) to simulated mesotrione residues as affected by soil pH manipulation. Agriculture (Switzerland), 11: 688.
Go to original source...
- Püntener W. (1981): Manual for Field Trials in Crop Protection. Ciba-Geigy, Agricultural Division.
- Riddle R.N., O'Sullivan J., Swanton C.J., Van Acker R.C. (2013): Field and greenhouse bioassays to determine mesotrione residues in soil. Weed Technology, 27: 565-572.
Go to original source...
- Ritz C., Baty F., Streibig J.C., Gerhard D. (2015): Dose-response analysis using R. Plos One, 10: e0146021.
Go to original source...
Go to PubMed...
- Robinson D.E. (2008): Atrazine accentuates carryover injury from mesotrione in vegetable crops. Weed Technology, 22: 641-645.
Go to original source...
- Romdhane S., Devers-Lamrani M., Beguet J., Bertrand C., Calvayrac C., Salvia M.-V., Jrad A.B., Dayan F.E., Spor A., Barthelmebs L., Martin-Laurent F. (2019): Assessment of the ecotoxicological impact of natural and synthetic β-triketone herbicides on the diversity and activity of the soil bacterial community using omic approaches. Science of The Total Environment, 651: 241-249.
Go to original source...
Go to PubMed...
- Santelmann P.W. (1977): Herbicide bioassays. In: Truelove B. (ed.): Research Methods in Weed Science. Auburn, Southern Weed Science Society, 80-87.
- Shaner D., Brunk G., Nissen S., Westra P., Chen W.L. (2012): Role of soil sorption and microbial degradation on dissipation of mesotrione in plant-available soil water. Journal of Environmental Quality, 41: 170-178.
Go to original source...
Go to PubMed...
- Soltani N.Ã., Sikkema P.H., Robinson D.E. (2007): Response of four market classes of dry bean to mesotrione soil residues. Crop Protection, 26: 1655-1659.
Go to original source...
- Su W., Hao H., Wu R., Xu H., Xue F., Lu C. (2017): Degradation of mesotrione affected by environmental conditions. Bulletin of Environmental Contamination and Toxicology, 98: 212-217.
Go to original source...
Go to PubMed...
- Von Wettstein D. (1957): Chlorophyll-letale und der submikroskopische Formwechsek der Plastiden. Experimental Cell Research, 12: 427-506.
Go to original source...
Go to PubMed...
- Wichert R.A., Towson J.K., Bartlett D.W., Foxon G.A. (1999): Technical review of mesotrione, a new maize herbicide. The 1999 Brighton Conference - Weeds. British Crop Protection Council, 105-110.
- Young B.G., Johnson B.C., Matthews J.L. (1999): Preemergence and sequential weed control with mesotrione in conventional corn. North Central Weed Science Society, Research Report, 56: 226-227.
- Young B.G., Young J.M., Matthews J.L. (2003): Soybean (Glycine max) response to foliar applications of mesotrione. Weed Technology, 17: 651-654.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.