Plant Soil Environ., 2022, 68(11):499-509 | DOI: 10.17221/168/2022-PSE

Cerium improves plant growth and fruit quality of strawberry plants under salt stress by changing the antioxidant capacity and water physiologyOriginal Paper

Xinliang Zhao1, Xiaoqing Zhang1, Shang Gao2, Changjuan Shan*,1
1 Henan Institute of Science and Technology, Xinxiang, P.R. China
2 Yangtze University, Jingzhou, P.R. China Xinliang Zhao, Xiaoqing Zhang and Shang Gao contributed equally to the article.

This study investigated the effects of cerium (Ce) on the growth and fruit quality of strawberries under salt stress. The findings revealed that salt stress markedly enhanced the activities of antioxidant enzymes and increased the contents of malonaldehyde (MDA) and hydrogen peroxide (H2O2) in leaves and the contents of anthocyanins, phenolic compounds, vitamin C (Vc), soluble sugar (SS) and titratable acid (TA) in fruits. Ce markedly improved the activities of ascorbate peroxidase, superoxide dismutase, peroxidase and catalase in leaves and the contents of anthocyanins, phenolic compounds, Vc and SS in fruits, but significantly decreased MDA and H2O2 levels in leaves and TA content in fruits under salt stress. However, salt stress significantly decreased the contents of chlorophyll (Chl) and carotenoids (Car), photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (gs), relative water content (RWC), plant height and biomass, and fruit weight and sugar-acid ratio (SAR). Compared with salt stress alone, Ce obviously increased Chl and Car contents, Pn, Tr, gs, RWC, plant height and biomass, as well as fruit weight and SAR. The above results suggested that Ce showed beneficial effects on the growth and fruit quality of strawberries under salt stress.

Keywords: salt tolerance; rare earth element; gas exchange parameters; abiotic stress; Fragaria × ananassa Duch.

Published: November 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zhao X, Zhang X, Gao S, Shan C. Cerium improves plant growth and fruit quality of strawberry plants under salt stress by changing the antioxidant capacity and water physiology. Plant Soil Environ. 2022;68(11):499-509. doi: 10.17221/168/2022-PSE.
Download citation

References

  1. Abdelaal K.A.A., Mazrou Y.S.A., Hafez Y.M. (2020): Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants (Basel), 9: 733. Go to original source... Go to PubMed...
  2. Avestan S., Ghasemnezhad M., Esfahani M., Byrt C.S. (2019): Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy, 9: 246. Go to original source...
  3. Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. Go to original source...
  4. Brennan T., Frenkel C. (1977): Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiology, 59: 411-416. Go to original source... Go to PubMed...
  5. Chen X.D., Shan C.J. (2019): Cerium nitrate improves salt tolerance of wheat seedlings by regulating the antioxidant capacity of chloroplasts. Biologia Plantarum, 63: 323-327. Go to original source...
  6. Crizel R.L., Perin E.C., Siebeneichler T.J., Borowski J.M., Messias R.S., Rombaldi C.V., Galli V. (2020): Abscisic acid and stress induced by salt: effect on the phenylpropanoid, l-ascorbic acid and abscisic acid metabolism of strawberry fruits. Plant Physiology and Biochemistry, 152: 211-220. Go to original source... Go to PubMed...
  7. Dong Z.H., Gong Y., Zhao J. (2022): Cerium-doped carbon quantum dots trigger mung bean seeds to help mitigate salt stress by increasing the degree of stomata opening. Carbon Letters, doi. org/10.1007/s42823-022-00376-0 Go to original source...
  8. Elbasan F., Ozfidan-Konakci C., Yildiztugay E., Kucukoduk M. (2020): Rare-earth element scandium improves stomatal regulation and enhances salt and drought stress tolerance by up-regulating antioxidant responses of Oryza sativa. Plant Physiology and Biochemistry, 152: 157-169. Go to original source... Go to PubMed...
  9. Faghih S., Ghobadi C., Zarei A. (2017): Response of strawberry plant cv. 'Camarosa' to salicylic acid and methyl jasmonate application under salt stress condition. Journal of Plant Growth Regulation, 36: 651-659. Go to original source...
  10. Ferreira J.F.S., Liu X., Suarez D.L. (2019): Fruit yield and survival of five commercial strawberry cultivars under field cultivation and salinity stress. Scientia Horticulturae, 243: 401-410. Go to original source...
  11. Galli V., Messias R. da S., Perin E.C., Borowski J.M., Bamberg A.L., Rombaldi C.V. (2016): Mild salt stress improves strawberry fruit quality. LWT - Food Science and Technology, 73: 693-699. Go to original source...
  12. Gohari G., Zareei E., Rostami H., Panahirad S., Kulak M., Farhadi H., Amini M., Martinez-Ballesta M. del C., Fotopoulos V. (2021): Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame seedless under salt stress conditions. Ecotoxicology and Environmental Safety, 220: 112402. Go to original source... Go to PubMed...
  13. Hajihashemi S., Skalicky M., Brestic M., Vachová P. (2020): Crosstalk between nitric oxide, hydrogen peroxide and calcium in saltstressed Chenopodium quinoa Willd. at seed germination stage. Plant Physiology and Biochemistry, 154: 657-664. Go to original source... Go to PubMed...
  14. Hong F.S., Qu C.X., Wang L. (2017): Cerium improves growth of maize seedlings via alleviating morphological structure and oxidative damages of leaf under different stresses. Journal of Agricultural and Food Chemistry, 65: 9022-9030. Go to original source... Go to PubMed...
  15. Hou K., Bao D.G., Shan C.J. (2018): Cerium improves the vase life of Lilium longiflorum cut flowers through ascorbate-glutathione cycle and osmoregulation in the petals. Scientia Horticulturae, 227: 142-145. Go to original source...
  16. Hu H., Shan C. (2018): Effect of cerium (Ce) on the redox states of ascorbate and glutathione through ascorbate-glutathione cycle in the roots of maize seedlings under salt stress. Cereal Research Communications, 46: 31-40. Go to original source...
  17. Huang G.Y., Shan C.J. (2018): Lanthanum improves the antioxidant capacity in chloroplast of tomato seedlings through ascorbate-glutathione cycle under salt stress. Scientia Horticulturae, 232: 264-268. Go to original source...
  18. Javeed H.M.R., Ali M., Skalicky M., Nawaz F., Qamar R., Rehman A.U., Faheem M., Mubeen M., Iqbal M.M., Rahman M.H.U., Vachova P., Brestic M., Baazeem A., Sabagh A.E. (2021): Lipoic acid combined with melatonin mitigates oxidative stress and promotes root formation and growth in salt-stressed canola seedlings (Brassica napus L.). Molecules, 26: 3147. Go to original source... Go to PubMed...
  19. Khan T.A., Saleem M., Fariduddin Q. (2022): Melatonin influences stomatal behavior, root morphology, cell viability, photosynthetic responses, fruit yield, and fruit quality of tomato plants exposed to salt stress. Journal of Plant Growth Regulation, doi. org/10.1007/s00344-022-10713-2. Go to original source...
  20. Lamnai K., Anaya F., Fghire R., Zine H., Wahbi S., Loutfi K. (2021): Impact of exogenous application of salicylic acid on growth, water status and antioxidant enzyme activity of strawberry plants (Fragaria vesca L.) under salt stress conditions. Gesunde Pflanzen, 73: 465-478. Go to original source...
  21. Latef A.A.A., Hasanuzzaman Md., Tahjib-Ul-Arif Md. (2021): Mitigation of salinity stress by exogenous application of cytokinin in faba bean (Vicia faba L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49: 12192. Go to original source...
  22. Li X.X. (1994): Quality and Analytical Method of Fresh Fruits and Vegetables. Beijing, China Agriculture Press.
  23. Li S.H., Li Y.M., He X.R., Li Q.M., Liu B.B., Ai X.Z., Zhang D.L. (2019): Response of water balance and nitrogen assimilation in cucumber seedlings to CO2 enrichment and salt stress. Plant Physiology and Biochemistry, 139: 256-263. Go to original source... Go to PubMed...
  24. Li H., Shi J.Y., Wang Z.P., Zhang W.W., Yang H.Q. (2020): H2S pretreatment mitigates the alkaline salt stress on Malus hupehensis roots by regulating Na+/K+ homeostasis and oxidative stress. Plant Physiology and Biochemistry, 156: 233-241. Go to original source... Go to PubMed...
  25. Liu J.H., Li G.J., Chen L.L., Gu J.J., Wu H.H., Li Z.H. (2021): Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. Journal of Nanobiotechnology, 19: 153. Go to original source... Go to PubMed...
  26. Liu Y.L., Cao X.S., Yue L., Wang C.X., Tao M.N., Wang Z.Y., Xing B.S. (2022): Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: reactive oxygen species homeostasis and rhizobacteria regulation. Environmental Pollution, 299: 118900. Go to original source... Go to PubMed...
  27. Perin E.C., Messias R. da S., Borowski J.M., Crizel R.L., Schott I.B., Carvalho I.R., Rombaldi C.V., Galli V. (2019): ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chemistry, 271: 516-526. Go to original source... Go to PubMed...
  28. Ren H.Y., Li H.Y., Chen H.Y., Bai L., Miao Y.L., Tao P., Liu W.L., Zhang X.W. (2019): Effects of foliar application of lanthanum and cerium on protein content and amino acid composition of soybeans and nutritional evaluation. Food Science, 40: 9-15.
  29. Rico C.M., Barrios A.C., Tan W.J., Rubenecia R., Lee S.C., VarelaRamirez A., Peralta-Videa J.R., Gardea-Torresdey J.L. (2015): Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environmental Science and Pollution Research, 22: 10551-10558. Go to original source... Go to PubMed...
  30. Salgado O.G.G., Teodoro J.C., Alvarenga J.P., de Oliveira C., de Carvalho T.S., Domiciano D., Marchiori P.E.R., Guilherme L.R.G. (2020): Cerium alleviates drought-induced stress in Phaseolus vulgaris. Journal of Rare Earths, 38: 324-331. Go to original source...
  31. Samadi S., Habibi G., Vaziri A. (2019): Exogenous trehalose alleviates the inhibitory effects of salt stress in strawberry plants. Acta Physiologiae Plantarum, 41: 112. Go to original source...
  32. Shan C., Wang T., Zhou Y., Wang W. (2018): Hydrogen sulfide is involved in the regulation of ascorbate and glutathione metabolism by jasmonic acid in Arabidopsis thaliana. Biologia Plantarum, 62: 188-193. Go to original source...
  33. Sheikhalipour M., Esmaielpour B., Behnamian M., Gohari G., Giglou M.T., Vachova P., Rastogi A., Brestic M., Skalicky M. (2021): Chitosan-selenium nanoparticle (Cs-Se NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials (Basel), 11: 684. Go to original source... Go to PubMed...
  34. Song Y.W., Xiang F.Y., Zhang G.Z., Miao Y.C., Miao C., Song C.P. (2016): Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana. Frontiers in Plant Science, 7: 181. Go to original source... Go to PubMed...
  35. Swain T., Hillis W.E. (1959): The phenolic constituints of Prunus domestica. I. - The quantitative analysis of phenolic constituints. Journal of the Science of Food and Agriculture, 10: 63-68. Go to original source...
  36. Wang Z.Q., Yang C.L., Chen H., Wang P., Wang P.T., Song C.P., Zhang X., Wang D.J. (2018): Multi-gene co-expression can improve comprehensive resistance to multiple abiotic stresses in Brassica napus L. Plant Science, 274: 410-419. Go to original source... Go to PubMed...
  37. Wei Q. (2009): The Experiment of Basic Biochemistry. Beijing, Higher Education Press.
  38. Wu H.H., Tito N., Giraldo J.P. (2017): Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano, 11: 11283-11297. Go to original source... Go to PubMed...
  39. Yaghubi K., Vafaee Y., Ghaderi N., Javadi T. (2019): Potassium silicate improves salinity resistant and affects fruit quality in two strawberry cultivars grown under salt stress. Communications in Soil Science and Plant Analysis, 50: 1439-1451. Go to original source...
  40. Yan F., Gao W.M., Luo W.P., Li Y.L. (2008): Determination of cerium in catalyst by atomic absorbance spectrometry. Chemical Analysis and Meterage, 17: 52-53.
  41. Yang X.H., Lu C.M. (2005): Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiologia Plantarum, 124: 343-352. Go to original source...
  42. Zahedi S.M., Abdelrahman M., Hosseini M.S., Hoveizeh N.F., Tran L.-S.P. (2019): Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environmental Pollution, 253: 246-258. Go to original source... Go to PubMed...
  43. Zhang Y.J., Gao H., Li Y.H., Wang L., Kong D.S., Guo Y.Y., Yan F.F., Wang Y.W., Lu K., Tian J.W., Lu Y.L. (2019): Effect of water stress on photosynthesis, chlorophyll fluorescence parameters and water use efficiency of common reed in the Hexi Corridor. Russian Journal of Plant Physiology, 66: 556-563. Go to original source...
  44. Zhang Y., Yao Q., Shi Y., Li X.F., Hou L.P., Xing G.M., Ahammed G.J. (2020): Elevated CO2 improves antioxidant capacity, ion homeostasis, and polyamine metabolism in tomato seedlings under Ca(NO3)2-induced salt stress. Scientia Horticulturae, 273: 109644. Go to original source...
  45. Zhang Z.Q., Pang X.Q., Yang C., Ji Z.L., Jiang Y.M. (2004): Purification and structural analysis of anthocyanins from litchi pericarp. Food Chemistry, 84: 601-604. Go to original source...
  46. Zheng M., Guo Y. (2018): Cerium improves the vase life of Dianthus caryophyllus cut flower by regulating the ascorbate and glutathione metabolism. Scientia Horticulturae, 240: 492-495. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.