Plant Soil Environ., 2023, 69(2):45-54 | DOI: 10.17221/348/2022-PSE

Impacts and mechanisms of biochar on soil microorganismsReview

Kai Huang1,2,3, Jun Zhang1,3, Guangming Tang1,3, Da Bao1,3, Tangyu Wang1,3, Deping Kong1,3
1 Yunnan Academy of Eco-environmental Sciences, Kunming, P.R. China
2 Yunnan Agricultural University, Kunming, P.R. China
3 Yunnan National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Kunming, P.R. China

Biochar is a carbonaceous material derived from the pyrolysis of carbon-rich biomass that has attracted increasing research and attention because of its ability to enhance soil carbon storage, increase soil fertility, fix and transform pollutants in soil, and improve the soil environment. These enhancements directly or indirectly affect soil microorganisms’ metabolic activities and community structure. This paper reviews the effects of biochar on soil physicochemical properties, enzyme activities, nutrients, contaminants, and related microbial activities. In addition, this work summarises the possible mechanisms involved in the interaction between biochar and microorganisms and the potential hazards associated with biochar use. Finally, this study aims to provide a theoretical basis for future related research.

Keywords: charcoal; soil pollution; soil microbial community; soil bacteria

Received: November 6, 2022; Accepted: February 7, 2023; Prepublished online: February 14, 2023; Published: February 26, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Huang K, Zhang J, Tang G, Bao D, Wang T, Kong D. Impacts and mechanisms of biochar on soil microorganisms. Plant Soil Environ. 2023;69(2):45-54. doi: 10.17221/348/2022-PSE.
Download citation

Supplementary files:

Download fileKong_final_version.pdf

File size: 1.8 MB

References

  1. Akhter A., Hage-Ahmed K., Soja G., Steinkellner S. (2015): Compost and biochar alter mycorrhisation, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici. Frontiers in Plant Science, 10: 529. Go to original source... Go to PubMed...
  2. Al-Wabel M.I., Al-Omran A., El-Naggar A.H., Nadeem M., Usman A.R. (2013): Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131: 374-379. Go to original source... Go to PubMed...
  3. Anjum R., Krakat N., Toufiq R.M., Klocke M. (2014): Assessment of the mutagenic potential of pyrolysis biochars by Ames Salmonella/mammalian-microsomal mutagenicity test. Ecotoxicology and Environmental Safety, 107: 306-312. Go to original source... Go to PubMed...
  4. Arshad M., Khan A.H.A., Hussain I., Badaruz Z., Anees M., Iqbal M., Soja G., Linde C., Yousaf S. (2017): The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Applied Soil Ecology, 114: 90-98. Go to original source...
  5. Bandara T., Herath I., Kumarathilaka P., Seneviratne M., Seneviratne G., Rajakaruna N., Vithanage M., Ok Y.S. (2017): Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilisation in serpentine soil. Journal of Soils and Sediments, 17: 665-673. Go to original source...
  6. Blanco C.H. (2017): Biochar and soil physical properties. Soil Science Society of America Journal, 81: 687-711. Go to original source...
  7. Cai Y., Chen H., Yuan R., Wang F., Chen Z., Zhou B. (2020): Metagenomic analysis of soil microbial community under PFOA and PFOS stress. Environmental Research, 188: 109838. Go to original source... Go to PubMed...
  8. Chen D., Wang C., Shen J., Li Y., Wu J. (2018): Response of CH4 emissions to straw and biochar applications in double-rice cropping systems: insights from observations and modeling. Environmental Pollution, 235: 95-103. Go to original source... Go to PubMed...
  9. Chen H.M., Du X.F., Lai M.Q., Nazhafati M., Li C., Qi W.C. (2021): Biochar improves sustainability of green roofs via regulate of soil microbial communities. Agriculture, 11: 620. Go to original source...
  10. Chen K., Xu X.N., Peng J., Feng X.J., Li Y.P., Zhan X.M., Han X.R. (2018): Effects of biochar and biochar-based fertiliser on soil microbial community structure. Scientia Agricultura Sinica, 51: 1920-1930.
  11. Dai Z., Barberán A., Li Y., Brookes P.C., Xu J. (2017): Bacterial community composition associated with pyrogenic organic matter (biochar) varies with pyrolysis temperature and colonisation environment. MSphere, 2: e00085-17. Go to original source... Go to PubMed...
  12. Devi P., Saroha A.K. (2014): Risk analysis of pyrolysed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresource Technology, 162: 308-315. Go to original source... Go to PubMed...
  13. Elad Y., David D.R., Harel Y.M., Borenshtein M., Kalifa H.B., Silber A., Graber E.R. (2010): Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 100: 913-921. Go to original source... Go to PubMed...
  14. Feng H.l., Xu C.S., He H.H., Zeng Q., Chen N., Li X.L., Ren T.B., Ji X.M., Liu G.S. (2021): Effect of biochar on soil enzyme activity and bacterial community and its mechanism. Environmental Science, 42: 422-432.
  15. Gao L., Wang R., Shen G., Zhang J., Meng G., Zhang J. (2017): Effects of biochar on nutrients and the microbial community structure of tobacco-planting soils. Journal of Soil Science and Plant Nutrition, 17: 884-896. Go to original source...
  16. Gao W.H., Guo Z.H., Gao K., Xu C., Chang M.Y., Liu Y., Wang G.L. (2021): Effects of biochar and biochar compound fertiliser on the soil bacterial and fungal community in the soybean rhizosphere. Ecology and Environmental Sciences, 30: 205-212.
  17. Gao W.H., Guo Z.H., Xue C., Yin H.F., Chang M.Y., Zhou Q.X., Wang G.L., Li F., Liu Y. (2020): Effect of ciochar and ciochar compound fertiliser on soil enzyme activity of soybean. Journal of Huaibei Normal University (Natural Sciences), 41: 48-53.
  18. Gao X., Cheng H.Y., Del V.I., Liu S., Masiello C.A., Silberg J.J. (2016): Charcoal disrupts soil microbial communication through a combination of signal sorption and hydrolysis. ACS Omega, 31: 226-233. Go to original source... Go to PubMed...
  19. Gasco G., Paz-Ferreiro J., Cely P., Plaza C., Mendez A. (2016): Influence of pig manure and its biochar on soil CO2 emissions and soil enzymes. Ecological Engineering, 95: 19-24. Go to original source...
  20. Glaser B., Lehmann J., Zech W. (2002): Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biology and Fertility of Soils, 35: 219-230. Go to original source...
  21. G³odowska M., Schwinghamer T., Husk B., Smith D. (2017): Biochar based inoculants improve soybean growth and nodulation. Agricultural Sciences, 8: 1048-1064. Go to original source...
  22. Gou M.M., Qu Z.Y., Wang F., Gao X.Y., Hu M. (2018): Progress in research on biochar affecting soil-water environment and carbon sequestration-mitigating emissions in agricultural fields. Transactions of the Chinese Society for Agricultural Machinery, 49: 1-12.
  23. Gorovtsov A.V., Minkina T.M., Mandzhieva S.S., Perelomov L.V., Soja G., Zamulina I.V., Rajput V.D., Sushkova S.N., Mohan D., Yao J. (2020): The mechanisms of biochar interactions with microorganisms in soil. Environmental Geochemistry and Health, 42: 2495-2518. Go to original source... Go to PubMed...
  24. Gul S., Whalen J.K., Thomas B.W., Sachdeva V., Deng H. (2015): Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems and Environment, 206: 46-59. Go to original source...
  25. Hu H.Y., Yin D.Y., Cao S., Zhang H., Zhou C.F., He Z.M. (2019): Effects of biochar on soil nutrient, enzyme activity, and bacterial properties of Chinese fir plantation. Acta Ecologica Sinica, 39: 4138-4148.
  26. Igalavithana A.D., Lee S.E., Lee Y.H., Tsang D.C., Rinklebe J., Kwon E.E., Ok Y.S. (2017): Heavy metal immobilisation and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 174: 593-603. Go to original source... Go to PubMed...
  27. Ippolito J.A., Cui L., Kammann C., Wrage M.N., Estavillo J.M., Fuertes M.T., Cayuela M.L., Sigua G., Novak J., Spokas K., Borchard N. (2020): Feedstock choice, pyrolysis temperature, and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2: 421-438. Go to original source...
  28. Jia J., Li B., Chen Z., Xie Z., Xiong Z. (2012): Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Science and Plant Nutrition, 58: 503-509. Go to original source...
  29. Joner E.J., Johansen A., Loibner A.P., dela Cruz M.A., Szolar O.H., Portal J.M., Leyval C. (2001): Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environmental Science and Technology, 35: 2773-2777. Go to original source... Go to PubMed...
  30. Kuang C.T., Jiang C.Y., Li P.Z., Hu F. (2012): Effects of biochar amendments on soil organic carbon mineralisation and microbial biomass in red paddy soils. Soils, 44: 570-575.
  31. Lehmann J. (2007): A handful of carbon. Nature, 447: 143-144. Go to original source... Go to PubMed...
  32. Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D. (2011): Biochar effects on soil biota - a review. Soil Biology and Biochemistry, 43: 1812-1836. Go to original source...
  33. Lei H.D., Yin Y.F., Liu Y., Wang X.H., Ma H.L., Gao R., Yang Y.S. (2016): Effects of fir (Cunninghamia lanceolata) litter and its biochar on soil microbial community structure. Acta Pedologica Sinica, 53: 790-799.
  34. Li C.B., Zhang J.Q., Chen X., Zhang J.G., Zhai X., Lin A.F. (2018): Effect of biochar application on soil health and its potential risks to flue-cured tobacco production. Chinese Tobacco Science, 39: 91-97.
  35. Li H.B., Zhong Y., Zhang H.N., Wang X., Chen J., Wang L.L., Xiao J.G., Xiao W., Wang W. (2020): Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances. Transactions of the Chinese Society of Agricultural Engineering, 36: 173-185.
  36. Li J., Li Q., Qian C., Wang X., Lan Y., Wang B., Yin W. (2019): Volatile organic compounds analysis and characterisation on activated biochar prepared from rice husk. International Journal of Environmental Science and Technology, 16: 7653-7662. Go to original source...
  37. Li M., Yin H., Zhu M., Yu Y., Lu G., Dang Z. (2021): Co-metabolic and biochar-promoted biodegradation of mixed PAHs by highly efficient microbial consortium QY1. Journal of Environmental Sciences, 107: 65-76. Go to original source... Go to PubMed...
  38. Li Z.B., Wang C.Y., Jiang X., Wang F. (2016): Progress of the research on potential environmental risk of polycyclic aromatic hydrocarbons (PAHs) in biochar. Acta Pedologica Sinica, 53: 1357-1370.
  39. Lian F., Xing B. (2017): Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk. Environmental Science and Technology, 51: 13517-13532. Go to original source... Go to PubMed...
  40. Liu C., Liu F., Ravnskov S., Rubæk G.H., Sun Z., Andersen M.N. (2017a): Impact of wood biochar and its interactions with mycorrhizal fungi, phosphorus fertilisation and irrigation strategies on potato growth. Journal of Agronomy and Crop Science, 203: 131-145. Go to original source...
  41. Liu Q., Liu B.J., Zhang Y.H., Lin Z.B., Zhu T.B., Sun R.B., Wang X.J., Ma J., Bei Q.C., Liu G., Lin X.W., Xie Z.B. (2017b): Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? Soil Biology and Biochemistry, 104: 8-17. Go to original source...
  42. Liu X., Wang Y., Gui C., Li P., Zhang J., Zhong H., Wei Y. (2016): Chemical forms and risk assessment of heavy metals in sludge-biochar produced by microwave-induced low temperature pyrolysis. RSC Advances, 6: 101960-101967. Go to original source...
  43. Lwin C.S., Seo B.H., Kim H.U., Owens G., Kim K.R. (2018): Application of soil amendments to contaminated soils for heavy metal immobilisation and improved soil quality - a critical review. Soil Science and Plant Nutrition, 64: 156-167. Go to original source...
  44. Lyu H.H., He Y.H., Tang J.C., Hecker M., Liu Q.L., Jones P.D., Codling G., Giesy J.P. (2016): Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environmental Pollution, 218: 1-7. Go to original source... Go to PubMed...
  45. Masiello C.A., Chen Y., Gao X.D., Liu S., Cheng H.Y., Bennett M.R., Rudgers J.A., Wagner D.S., Zygourakis K., Silberg J.J. (2013): Biochar and microbial signaling: production conditions determine effects on microbial communication. Environmental Science and Technology, 47: 11496-11503. Go to original source... Go to PubMed...
  46. Meller H.Y., Elad Y., Rav D.D., Borenstein M., Shulchani R. (2012): Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant and Soil, 357: 245-257. Go to original source...
  47. Mukherjee A., Zimmerman A.R., Hamdan R., Cooper W.T. (2014): Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging. Solid Earth, 5: 693-704. Go to original source...
  48. Ni N., Song Y., Shi R., Liu Z.T., Bian Y.R., Wang F., Yang X.L., Gu C.G., Jiang X. (2017): Biochar reduces the bioaccumulation of PAHs from soil to carrot (Daucus carota L.) in the rhizosphere: a mechanism study. Science of The Total Environmental, 601-602: 1015-1023. Go to original source... Go to PubMed...
  49. Ni N., Wang F., Song Y., Bian Y.R., Shi R.Y., Yang X.L., Gu C.G., Jiang X. (2018): Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: degradation stimulation vs immobilisation. Chemosphere, 196: 288-296. Go to original source... Go to PubMed...
  50. Odinga E.S., Waigi M.G., Gudda F.O., Wang J., Yang B., Hu X.J., Li S.Y., Gao Y.Z. (2020): Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. Environment International, 134: 105172. Go to original source... Go to PubMed...
  51. Oleszczuk P., Josko I., Futa B., Pasieczna P.S., Pa³ys E., Kraska P. (2014): Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil. Geoderma, 214: 10-18. Go to original source...
  52. Palansooriya K.N., Wong J.T.F., Hashimoto Y., Huang L.B., Rinklebe J., Chang S.X., Bolan N., Wang H., Ok Y.S. (2019): Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1: 3-22. Go to original source...
  53. Pietikäinen J., Kiikkilä O., Fritze H. (2000): Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89: 231-242. Go to original source...
  54. Prayogo C., Jones J.E., Baeyens J., Bending G.D. (2014): Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils, 50: 695-702. Go to original source...
  55. Qin Y.X., Li G.Y., An T.C., Yang Z.F. (2021): Advances in ecological and health risks of biochar during environmental applications. China Science Bulletin, 66: 5-20. Go to original source...
  56. Qin Y.X., Li G., Gao Y., Zhang L., Ok Y.S., An T. (2018): Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review. Water Research, 137: 130-143. Go to original source... Go to PubMed...
  57. Rao S., Lu Y., Huang F., Cai Y.X., Cai K.Z. (2016): A review of researches on effects of biochars on soil microorganisms. Journal of Ecology and Rural Environment, 32: 53-59.
  58. Sazykin I.S., Sazykina M.A., Khmelevtsova L.E., Seliverstova E.Y., Karchava K.S., Zhuravleva M. (2018): Antioxidant enzymes and reactive oxygen species level of the Achromobacter xylosoxidans bacteria during hydrocarbons biotransformation. Archives of Microbiology, 200: 1057-1065. Go to original source... Go to PubMed...
  59. Sheng Y., Zhu L. (2018): Biochar alters microbial community and carbon sequestration potential across different soil pH. Science of The Total Environment, 622: 1391-1399. Go to original source... Go to PubMed...
  60. Spokas K.A., Novak J.M., Stewart C.E., Cantrell K.B., Uchimiya M., DuSaire M.G., Ro K.S. (2011): Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85: 869-882. Go to original source... Go to PubMed...
  61. Sun D.Q., Meng J., Liang H., Yang E., Huang Y.W., Chen W.F., Jiang L.L., Lan Y., Zhang W.M., Gao J.P. (2015): Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. Journal of Soils and Sediments, 15: 271-281. Go to original source...
  62. Sun Y.N., He Z.W., Cao X.Y., Zhao Q., Liu F., Jia Z.H., Song S.S., Zhang L.P. (2021a): Involvement of receptor-like protein kinase PBL28 in the regulation of root growth by N-decanoyl-homoserine lactone in Arabidopsis. Plant Physiology Journal, 57: 1271-1280.
  63. Sun Y.Q., Xiong X.N., He M.J., Xu Z.B., Hou D.Y., Zhang W.H., Ok Y.S., Rinklebe J., Wang L.L., Tsang D.C.W. (2021b): Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: a critical review. Chemical Engineering Journal, 424: 130387. Go to original source...
  64. Tomczyk A., Soko³owska Z., Boguta P. (2020): Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and BioTechnology, 19: 191-215. Go to original source...
  65. Vithanage M., Bandara T., Al-Wabel M.I., Abduljabbar A., Usman A.R., Ahmad M., Ok Y.S. (2018): Soil enzyme activities in waste biochar amended multi-metal contaminated soil; effect of different pyrolysis temperatures and application rates. Communications in Soil Science and Plant Analysis, 49: 635-643. Go to original source...
  66. Wang C., Wang Y., Herath H. (2017): Polycyclic aromatic hydrocarbons (PAHs) in biochar - their formation, occurrence and analysis: a review. Organic Geochemistry, 114: 1-11. Go to original source...
  67. Wang C., Shen J.L., Liu J.Y., Qin H.L., Yuan Q., Fan F.L., Hu Y.J., Wang J., Wei W.X., Li Y., Wu J.S. (2019): Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: a four-year study. Soil Biology and Biochemistry, 135: 251-263. Go to original source...
  68. Wang M.M., Zhou Q.X. (2013): Environmental effects and their mechanisms of biochar applied to soils. Environmental Chemistry, 32: 768-780.
  69. Wang Q., Chen L., He L.Y., Sheng X.F. (2016): Increased biomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth-promoting Neorhizobium huautlense T1-17 and biochar. Agriculture, Ecosystems and Environment, 228: 9-18. Go to original source...
  70. Wang X., Song D., Liang G., Zhang Q., Ai C., Zhou W. (2015): Maise biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Applied Soil Ecology, 96: 265-272. Go to original source...
  71. Wang Y.X., Huang J.Q., Ye J., Li Y.C., Lin Y., Liu C.W. (2020): Effects of different amount of biochar application on soil property and bacterial community structure in acidified tea garden. Journal of Plant Nutrition and Fertilizers, 26: 1967-1977.
  72. Wang Y.Y., Jing X.R., Li L.L., Liu W.J., Tong Z.H., Jiang H. (2017): Biotoxicity evaluations of three typical biochars using a simulated system of fast pyrolytic biochar extracts on organisms of three kingdoms. Acs Sustainable Chemistry and Engineering, 5: 481-488. Go to original source...
  73. Warnock D.D., Lehmann J., Kuyper T.W., Rillig M.C. (2007): Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil, 300: 9-20. Go to original source...
  74. Wong J.W.C., Ogbonnaya U.O. (2021): Biochar porosity: a nature-based dependent parameter to deliver microorganisms to soils for land restoration. Environmental Science and Pollution Research, 28: 46894-46909. Go to original source... Go to PubMed...
  75. Wu S., Zhang Y., Tan Q., Sun X., Wei W., Hu C. (2020): Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma mandarin. Science of The Total Environment, 714: 136722. Go to original source... Go to PubMed...
  76. Xiang L., Liu S.J., Ye S.J., Yang H.L., Song B., Qin F.Z., Shen M.C., Tan C., Zeng G.M., Tan X.F. (2021): Potential hazards of biochar: the negative environmental impacts of biochar applications. Journal of Hazardous Materials, 420: 126611. Go to original source... Go to PubMed...
  77. Xu G.P., Teng Q.M., Shen Y.Y., Qiu Z.Q., Zhang D.N., He C.X., Mou H.F., Zhou L.W., Mou Z.Y. (2020): Effects of banana stems-leaves biochar on soil properties and control of banana Fusarium Wilt. Ecology and Environmental Sciences, 29: 2373-2384.
  78. Xu M.L., Chen Y.G., Xiao R.B., Mei C., Dai W.J., Wang P., Huang F. (2021): Progress in influential mechanisms of biochar on available heavy metals in soil. Environmental Engineering, 39: 165-172.
  79. Xu Y.L., Seshadri B., Sarkar B., Wang H.L., Rumpel C., Sparks D., Farrell M., Hall T., Yang X.D., Bolan N. (2018): Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of The Total Environmental, 621: 148-159. Go to original source... Go to PubMed...
  80. Xu Y.X., He L.L., Liu Y.X., Lv H.H., Wang Y.Y., Chen J.Y., Yang S.M. (2019): Effects of biochar addition on enzyme activity and fertility in paddy soil after six years. Chinese Journal of Applied Ecology, 30: 1110-1118. Go to PubMed...
  81. Zhao M., Dai Y., Zhang M.Y., Feng C., Qin B.J., Zhang W.H., Zhao N., Li Y.Y., Ni Z.B., Xu Z.H., Tsang D.C.W., Qiu R.L. (2020): Mechanisms of Pb and/or Zn adsorption by different biochars: biochar characteristics, stability, and binding energies. Science of the Total Environment, 717: 136894. Go to original source... Go to PubMed...
  82. Zhang Y., Chen Z., Xu W., Liao Q., Zhang H., Hao S., Chen S. (2020): Pyrolysis of various phytoremediation residues for biochars: chemical forms and environmental risk of Cd in biochar. Bioresource Technology, 299: 122581. Go to original source... Go to PubMed...
  83. Zheng H., Wang X., Luo X.X., Wang Z.Y., Xing B.S. (2018): Biochar-induced negative carbon mineralisation priming effects in a coastal wetland soil: roles of soil aggregation and microbial modulation. Science of The Total Environment, 610-611: 951-960. Go to original source... Go to PubMed...
  84. Zheng J.F., Chen J.H., Pan G.X., Liu X.Y., Zhang X.H., Li L.Q., Bian R.J., Cheng K., Zheng J.W. (2016): Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Science of The Total Environment, 571: 206-217. Go to original source... Go to PubMed...
  85. Zhou Y.X., Wang X.T., Wang G.L., Xu X.P., Wang W.Q. (2020): Effect of the slag and biochar application on bacterial diversity and community composition of paddy field. China Environmental Science, 40: 1213-1223.
  86. Zhu X., Chen B., Zhu L., Xing B. (2017): Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environmental Pollution, 227: 98-115. Go to original source... Go to PubMed...
  87. Zhu Y.G., Peng J.J., Wei Z., Shen Q.R., Zhang F.S. (2021): Linking the soil microbiome to soil health. Science China Life Sciences, 51: 1-11. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.