Plant Soil Environ., 2023, 69(6):247-268 | DOI: 10.17221/461/2022-PSE
Chemical composition of earthworm casts as a tool in understanding the earthworm contribution to ecosystem sustainability – a reviewReview
- 1 Department of Sustainable Development and Environmental Engineering, Faculty of Agriculture, University of Life Sciences "King Michael I", Timișoara, Romania
Earthworms dominate the soil biota, and different structural and functional features of their biology and ecology have been studied and exploited to evaluate their contributions as ecosystem services. Due to their feeding ecology, burrowing and casting activity, earthworms are involved in the nutrient cycles, and therefore it is opportune to be considered when the biogeochemical cycles of the terrestrial ecosystems are analysed. All structural, microbiological and biogeochemical impacts of earthworms in soil start with their feeding and digestive functions, which end in casting. The casting activity consisting of the excretion of the ingested soil and organic matter after digestion processes depends on earthworm feeding behaviours and ecology, even described in the current literature as a new ecological feature: the casting ecology. The complexity of the chemical relationships occurring inside earthworm casts between main nutrients (organic carbon, nitrogen, phosphorus, potassium, calcium) highlights the complexity of the biogeochemical cycles and the great earthworms’ contribution to these cycles in the ecosystems towards a better understanding of the soil sustainability through the soil biodiversity contribution. Due to this great contribution, the earthworms’ casts should be included as indicators in the integrative conservation management of the ecosystems, as a re-thinking of the concept of ecosystem sustainability.
Keywords: soil biota; bioturbation; Oligochaeta: Lumbricidae; bioindicator; soil services
Accepted: June 6, 2023; Published: June 28, 2023 Show citation
References
- Abail Z., Sampedro L., Whalen J.K. (2017): Short-term carbon mineralisation from endogeic earthworm casts as influenced by properties of the ingested soil material. Applied Soil Ecology, 116: 79-86.
Go to original source...
- Agapit C., Gigon A., Puga-Freitas R., Zeller B., Blouin M. (2018): Plant-earthworm interactions: influence of age and proportion of casts in the soil on plant growth, morphology and nitrogen uptake. Plant and Soil, 424: 49-61.
Go to original source...
- Aira M., Lazcano C., Gomez-Brandon M., Dominguez J. (2010): Ageing effects of casts of Aporrectodea caliginosa on soil microbial community structure and activity. Applied Soil Ecology, 46: 143-146.
Go to original source...
- Aira M., Perez-Losada M., Crandall K.A., Dominguez J. (2022a): Composition, structure and diversity of soil bacterial communities before, during and after transit through the gut of the earthworm Aporrectodea caliginosa. Microorganisms, 10: 1025.
Go to original source...
Go to PubMed...
- Aira M., Perez-Losada M., Crandall K.A., Dominguez J. (2022b): Host taxonomy determines the composition, structure, and diversity of the earthworm cast microbiome under homogenous feeding conditions. FEMS Microbiology Ecology, 98: fiac093.
Go to original source...
- Aleixo S., Gama-Rodrigues A.C., Gama-Rodrigues E.F., Campello E.F.C., Silva E.C., Schripsema J. (2020): Can soil phosphorus availability in tropical forest systems be increased by nitrogen-fixing leguminous trees? Science of the Total Environment, 712: 136405.
Go to original source...
Go to PubMed...
- Alekseeva T., Besse P., Binet F., Delort A.M., Forano C., Josselin N., Sancelme C., Tixier C. (2006): Effect of earthworm activity (Aporrectodea giardi) on atrazine adsorption and biodegradation. European Journal of Soil Science, 57: 295-307.
Go to original source...
- Andriucã V., Gîrla D., Iordache M. (2012): Comparative earthworm research in various ecosystems with different anthropic impact. Research Journal of Agricultural Science, 44: 149-153.
- Arai M., Miura T., Tsuzura H., Minamiya Y., Kaneko N. (2018): Two-year responses of earthworm abundance, soil aggregates, and soil carbon to no-tillage and fertilization. Geoderma, 332: 135-141.
Go to original source...
- Basilio F., Dias T., Santana M.M., Melo J., Carvalho L., Correia P., Cruz C. (2022): Multiple modes of action are needed to unlock soil phosphorus fractions unavailable for plants: the example of bacteria- and fungi-based biofertilizers. Applied Soil Ecology, 178: 104550.
Go to original source...
- Basker A., Kirkman J.H., Macgregor A.N. (1994): Changes in potassium availability and other soil properties due to soil ingestion by earthworms. Biology and Fertility of Soils, 17: 154-158.
Go to original source...
- Basker A., Macgregor A.N., Kirkman J.H. (1992): Influence of soil ingestion by earthworms on the availability of potassium in soil - an incubation experiment. Biology and Fertility of Soils, 14: 300-303.
Go to original source...
- Basker A., Macgregor A.N., Kirkman J.H. (1993): Exchangeable potassium and other cations in non-ingested soil and casts of two species of pasture earthworms. Soil Biology and Biochemistry, 25: 1673-1677.
Go to original source...
- Beck R., Andreassen J.P. (2010): Spherulitic growth of calcium carbonate. Crystal Growth and Design, 10: 2934-2947.
Go to original source...
- Bernard L., Chapuis-Lardy L., Razafimbelo T., Razafindrakoto M., Pablo A.L., Legname E., Poulain J., Brüls T., O'Donohue M., Brauman A., Chotte J.L., Blanchart E. (2012): Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME Journal, 6: 213-222.
Go to original source...
Go to PubMed...
- Bohlen P.J., Groffman P.M., Fahey T.J., Fisk M.C., Suarez E., Pelletier D.M., Fahey R.T. (2004): Ecosystem consequences of exotic earthworm invasion of north temperate forests. Ecosystems, 7: 1-12.
Go to original source...
- Bots P., Benning L.G., Rodriguez-Blanco J.D., Roncal-Herrero T., Shaw S. (2012): Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Crystal Growth and Design, 12: 3806-3814.
Go to original source...
- Bottinelli N., Hallaire V., Menasseri-Aubry S., Le Guillou C., Cluzeau D. (2010): Abundance and stability of belowground earthworm casts influenced by tillage intensity and depth. Soil and Tillage Research, 106: 263-267.
Go to original source...
- Bottinelli N., Kaupenjohann M., Marten M., Jouquet P., Soucemarianadin L., Baudin F., Tran T.M., Rumpel C. (2020): Age matters: fate of soil organic matter during ageing of earthworm casts produced by the anecic earthworm Amynthas khami. Soil Biology and Biochemistry, 148: 107906.
Go to original source...
- Boyle P.E., Richardson M.D., Savin M.C., Karcher D.E., Potter D.A. (2019): Ecology and management of earthworm casting on sports turf. Pest Management Science, 75: 2071-2078.
Go to original source...
Go to PubMed...
- Brinza L., Schofield P.F., Hodson M.E., Weller S., Ignatyev K., Geraki K., Quinn P.D., Mosselmans J.F.W. (2014): Combining μXANES and μXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris. Journal of Synchrotron Radiation, 21: 235-241.
Go to original source...
Go to PubMed...
- Briones M.J.I., Lopez E., Mendez J., Rodriguez J.B., Gago-Duport L. (2008): Biological control over the formation and storage of amorphous calcium carbonate by earthworms. Mineralogical Magazine, 72: 227-231.
Go to original source...
- Brown G.G., Barois I., Lavelle P. (2000): Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. European Journal of Soil Biology, 36: 177-198.
Go to original source...
- Canti M.G., Piearce T.G. (2003): Morphology and dynamics of calcium carbonate granules produced by different earthworm species. Pedobiologia, 47: 511-521.
Go to original source...
- Carpenter D., Hodson M.E., Eggleton P., Kirk C. (2007): Earthworm induced mineral weathering: preliminary results. European Journal of Soil Biology, 43: S176-S183.
Go to original source...
- Chakraborty S., Paul N., Chaudhuri P.S. (2020): Earthworm casting activities under bamboo plantations of West Tripura, India and their impact on soil physicochemical properties. Current Science, 119: 1169-1177.
Go to original source...
- Chen X., Liang A., Wu D., McLaughlin N.B., Jia S., Zhang S., Zhang Y., Huang D. (2021): Tillage-induced effects on organic carbon in earthworm casts through changes in their physical and structural stability parameters. Ecological Indicators, 125: 107521.
Go to original source...
- Cortez J., Billes G., Bouché M.B. (2000): Effect of climate, soil type and earthworm activity on nitrogen transfer from a nitrogen-15-labelled decomposing material under field conditions. Biology and Fertility of Soils, 30: 318-327.
Go to original source...
- Das P.P., Singh K.R., Nagpure G., Mansoori A., Singh R.P., Ghazi I.A., Kumar A., Singh J. (2022): Plant-soil-microbes: a tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environmental Research, 214: 113821.
Go to original source...
Go to PubMed...
- De Menezes A.B., Prendergast-Miller M.T., Macdonald L.M., Toscas P., Baker G., Farrell M., Wark T., Richardson A.E., Thrall P.H. (2018): Earthworm-induced shifts in microbial diversity in soils with rare versus established invasive earthworm populations. FEMS Microbiology Ecology, 94: fiy051.
Go to original source...
- Decaens T., Rangel A.F., Asakawa N., Thomas R.J. (1999): Carbon and nitrogen dynamics in ageing earthworm casts in grasslands of the eastern plains of Colombia. Biology and Fertility of Soils, 30: 20-28.
Go to original source...
- Desie E., Van Meerbeek K., De Wandeler H., Bruelheide H., Domisch T., Jaroszewicz B., Joly F.X., Vancampenhout K., Vesterdal L., Muys B. (2020): Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Functional Ecology, 34: 2598-2610.
Go to original source...
- Dixon R.K., Brown S., Houghton R.A., Solomon A.M., Trexler M.C., Wisniewski J. (1994): Carbon pools and flux of global forest ecosystems. Science, 263: 185-190.
Go to original source...
Go to PubMed...
- Don A., Steinberg B., Schoening I., Pritsch K., Joschko M., Gleixner G., Schulze E.D. (2008): Organic carbon sequestration in earthworm burrows. Soil Biology and Biochemistry, 40: 1803-1812.
Go to original source...
- Dungait J.A.J., Briones M.J.I., Bol R., Evershed R.P. (2008): Enhancing the understanding of earthworm feeding behaviour via the use of fatty acid δ13C values determined by gas chromatography-combustion-isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 22: 1643-1652.
Go to original source...
Go to PubMed...
- Eisenhauer N. (2010): The action of an animal ecosystem engineer: identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia, 53: 343-352.
Go to original source...
- Faatz M., Grohn F., Wegner G. (2004): Amorphous calcium carbonate: synthesis and potential intermediate in biomineralization. Advanced Materials, 16: 996-1000.
Go to original source...
- Fahey T.J., Yavitt J.B., Sherman R.E., Groffman P.M., Fisk M.C., Maerz J.C. (2011): Transport of carbon and nitrogen between litter and soil organic matter in a northern hardwood forest. Ecosystems, 14: 326-340.
Go to original source...
- FAO (2017): Soil organic carbon: the hidden potential. Rome, Food and Agriculture Organisation of the United Nations. Available at: https://www.fao.org/3/i6937e/i6937e.pdf
- Ferlian O., Thakur M.P., Gonzalez A.C., San Emeterio L.M., Marr S., Rocha B.D., Eisenhauer N. (2020): Soil chemistry turned upside down: a meta-analysis of invasive earthworm effects on soil chemical properties. Ecology, 101: e02936.
Go to original source...
Go to PubMed...
- Fisk M.C., Fahey T.J., Groffman P.M., Bohlen P.J. (2004): Earthworm invasion, fine-root distributions, and soil respiration in north temperate forests. Ecosystems, 7: 55-62.
Go to original source...
- Flegel M., Schrader S., Zhang H. (1998): Influence of food quality on the physical and chemical properties of detritivorous earthworm casts. Applied Soil Ecology, 9: 263-269.
Go to original source...
- Frelich L.E., Hale C.M., Scheu S., Holdsworth A.R., Heneghan L., Bohlen P.J., Reich P.B. (2006): Earthworm invasion into previously earthworm-free temperate and boreal forests. Biological Invasions, 8: 1235-1245.
Go to original source...
- Furlong M.A., Singleton D.R., Coleman D.C., Whitman W.B. (2002): Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Applied and Environmental Microbiology, 68: 1265-1279.
Go to original source...
Go to PubMed...
- Gago-Duport L., Briones M.J.I., Rodriguez J.B., Covelo B. (2008): Amorphous calcium carbonate biomineralization in the earthworm's calciferous gland: pathways to the formation of crystalline phases. Journal of Structural Biology, 162: 422-435.
Go to original source...
Go to PubMed...
- Garcia-Montero L.G., Valverde-Asenjo I., Grande-Ortiz M.A., Menta C., Hernando I. (2013): Impact of earthworm casts on soil pH and calcium carbonate in black truffle burns. Agroforestry Systems, 87: 815-826.
Go to original source...
- Garnier P., Makowski D., Hedde M., Bertrand M. (2022): Changes in soil carbon mineralization related to earthworm activity depend on the time since inoculation and their density in soil. Scientific Reports, 12: 13616.
Go to original source...
Go to PubMed...
- Ge F., Shuster W.D., Edwards C.A., Parmelee R.W., Subler S. (2001): Water stability of earthworm casts in manure- and inorganic-fertilizer amended agroecosystems influenced by age and depth. Pedobiologia, 45: 12-26.
Go to original source...
- Guhra T., Stolze K., Schweizer S., Totsche K.U. (2020): Earthworm mucus contributes to the formation of organo-mineral associations in soil. Soil Biology and Biochemistry, 145: 07785.
Go to original source...
- Hawkesford M., Horst W., Kichey T., Lambers H., Schjoerring J., Moller I.S., White P. (2012): Functions of macronutrients. Available at: https://doi.org/10.1016/b978-0-12-384905-2.00006-6
Go to original source...
- Haynes R.J., Fraser P.M. (1998): A comparison of aggregate stability and biological activity in earthworm casts and uningested soil as affected by amendment with wheat or lucerne straw. European Journal of Soil Science, 49: 629-636.
Go to original source...
- He X., Chen Y., Liu S., Gunina A., Wang X., Chen W., Shao Y., Shi L., Yao Q., Li J., Zou X., Schimel J.P., Zhang W., Fu S. (2018): Cooperation of earthworm and arbuscular mycorrhizae enhanced plant N uptake by balancing absorption and supply of ammonia. Soil Biology and Biochemistry, 116: 351-359.
Go to original source...
- Hodson M.E., Benning L.G., Demarchi B., Penkman K.E.H., Rodriguez-Blanco J.D., Schofield P.F., Versteegh E.A.A. (2015): Biomineralisation by earthworms - an investigation into the stability and distribution of amorphous calcium carbonate. Geochemical Transactions, 16: 4.
Go to original source...
Go to PubMed...
- Hoeffner K., Monard C., Santonja M., Cluzeau D. (2018): Feeding behaviour of epi-anecic earthworm species and their impacts on soil microbial communities. Soil Biology and Biochemistry, 125: 1-9.
Go to original source...
- Hopfensperger K.N., Leighton G.M., Fahey T.J. (2011): Influence of invasive earthworms on above and belowground vegetation in a northern hardwood forest. American Midland Naturalist, 166: 53-62.
Go to original source...
- Ihssen J., Horn M.A., Matthies C., Gossner A., Schramm A., Drake H.L. (2003): N2O-producing microorganisms in the gut of the earthworm Aporrectodea caliginosa are indicative of ingested soil bacteria. Applied and Environmental Microbiology, 69: 1655-1661.
Go to original source...
Go to PubMed...
- Iordache M. (2012): Abundance of earthworms under fertilization with organo-mineral fertilizers in a chernozem from west of Romania. Journal of Food Agriculture and Environment, 10: 1103-1105.
- James S.W. (1991): Soil, nitrogen, phosphorus, and organic matter processing by earthworms in tallgrass prairie. Ecology, 72: 2101-2109.
Go to original source...
- Jia X., Wei X., Shao M., Li X. (2012): Distribution of soil carbon and nitrogen along a revegetational succession on the Loess Plateau of China. Catena, 95: 160-168.
Go to original source...
- Jones C.G., Lawton J.H., Shachak M. (1994): Organisms as ecosystem engineers. Oikos, 69: 373-386.
Go to original source...
- Jouquet P., Bernard-Reversat F., Bottinelli N., Orange D., Rouland-Lefevre C., Duc T.T., Podwojewski P. (2007): Influence of changes in land use and earthworm activities on carbon and nitrogen dynamics in a steepland ecosystem in Northern Vietnam. Biology and Fertility of Soils, 44: 69-77.
Go to original source...
- Jouquet P., Bottinelli N., Kernels G., Henry-des-Tureaux T., Doan T.T., Planchon O., Tran T.D. (2013): Surface casting of the tropical Metaphire posthuma increases soil erosion and nitrate leaching in a laboratory experiment. Geoderma, 204-205: 10-14.
Go to original source...
- Jouquet P., Bottinelli N., Podwojewski P., Hallaire V., Duc T.T. (2008): Chemical and physical properties of earthworm casts as compared to bulk soil under a range of different land-use systems in Vietnam. Geoderma, 146: 231-238.
Go to original source...
- Kawakami T., Makoto K. (2017): Does an earthworm species acclimatize and/or adapt to soil calcium conditions? The consequences of soil nitrogen mineralization in forest soil. Ecological Research, 32: 603-610.
Go to original source...
- Knowles M.E., Ross D.S., Gorres J.H. (2016): Effect of the endogeic earthworm Aporrectodea tuberculata on aggregation and carbon redistribution in uninvaded forest soil columns. Soil Biology and Biochemistry, 100: 192-200.
Go to original source...
- Kohler J., Yang N., Pena R., Raghavan V., Polle A., Meier I.C. (2018): Ectomycorrhizal fungal diversity increases phosphorus uptake efficiency of European beech. New Phytologist, 220: 1200-1210.
Go to original source...
Go to PubMed...
- Koubová A., Chronáková A., Pi¾l V., Sánchez-Monedero M.A., Elhottová D. (2015): The effects of earthworms Eisenia spp. on microbial community are habitat dependent. European Journal of Soil Biology, 68: 42-55.
Go to original source...
- Lavelle P., Lattaud C., Trigo D., Barois I. (1995): Mutualism and biodiversity in soils. Plant and Soil, 170: 23-33.
Go to original source...
- Lavelle P., Melendez G., Pashanasi B., Schaefer R. (1992): Nitrogen mineralization and reorganization in casts of the geophagous tropical earthworm Pontoscolex-Corethrurus (Glossoscolecidae). Biology and Fertility of Soils, 14: 49-53.
Go to original source...
- Lavelle P., Spain A.V. (2001): Soil Ecology. New York, Kluwer Academic Publishers.
Go to original source...
- Law M.M.S., Lai D.Y.F. (2021): Impacts of wetting-drying cycles on short-term carbon and nitrogen dynamics in Amynthas earthworm casts. Pedosphere, 31: 423-432.
Go to original source...
- Le Mer G., Bottinelli N., Dignac M.F., Capowiez Y., Jouquet P., Mazurier A., Baudin F., Caner L., Rumpel C. (2022): Exploring the control of earthworm cast macro- and micro-scale features on soil organic carbon mineralization across species and ecological categories. Geoderma, 427: 116151.
Go to original source...
- Lee K.E. (1985): Earthworms: Their Ecology and Relationships with Soils and Land Use. Sydney, Academic Press Inc.
- Lemtiri A., Colinet G., Alabi T., Cluzeau D., Zirbes L., Haubruge E., Francis F. (2014): Impacts of earthworms on soil components and dynamics. A review. Biotechnologie, Agronomie, Société Et Environnement, 18: 121-133.
- Leue M., Wohld A., Gerke H.H. (2018): Two-dimensional distribution of soil organic carbon at intact macropore surfaces in BT-horizons. Soil and Tillage Research, 176: 1-9.
Go to original source...
- Li H., Mollier A., Ziadi N., Messiga A.J., Shi Y., Pellerin S., Parent L.E., Morel C. (2019): Long-term modeling of phosphorus spatial distribution in the no-tilled soil profile. Soil and Tillage Research, 187: 119-134.
Go to original source...
- Li Q., Denton M.D., Huang Y., Zhou D. (2021): Nitrogen enrichment intensifies legume reliance on root phosphatase activity but weakens inter-specific correlations between N2 fixation and mycorrhizal colonization. Plant and Soil, 465: 503-514.
Go to original source...
- Li Q., Sun Y., Zhang X., Xu X., Kuzyakov Y. (2014): Relation between carbon and nitrogen mineralization in a subtropical soil. EGU General Assembly Conference Abstracts, 13120.
- Li W., Zhang P., Qiu H., Van Gestel C.A.M., Peijnenburg W.J.G.M., Cao X., Zhao L., Xu X., He E. (2022): Commonwealth of soil health: how do earthworms modify the soil microbial responses to CeO2 nanoparticles? Environmental Science and Technology, 56: 1138-1148.
Go to original source...
Go to PubMed...
- Liu D., Lian B., Wang B., Jiang G. (2011): Degradation of potassium rock by earthworms and responses of bacterial communities in its gut and surrounding substrates after being fed with mineral. PlosOne, 6: e28803.
Go to original source...
Go to PubMed...
- Liu J., Hu J., Cheng Z., Li M., Liu Z., Wang J., Lin X. (2021): Can phosphorus (P)-releasing bacteria and earthworm (Eisenia fetida L.) co-enhance soil P mobilization and mycorrhizal P uptake by maize (Zea mays L.)? Journal of Soils and Sediments, 21: 842-852.
Go to original source...
- Liu W., Xu X., Wu X., Yang Q., Luo Y., Christie P. (2006): Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environmental Geochemistry and Health, 28: 133-140.
Go to original source...
Go to PubMed...
- Liu X., Bai Z., Zhou W., Cao Y., Zhang G. (2017): Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China. Ecological Engineering, 98: 228-239.
Go to original source...
- Lopez-Hernandez D., Lavelle P., Fardeau J.C., Nino M. (1993): Phosphorus transformations in two P sorption contrasting tropical soils during transit through Pontoscolex corethrurus (Glossoscolecidae: Oligochaeta). Soil Biology and Biochemistry, 25: 789-792.
Go to original source...
- Lu Y., Gao P., Wang Y., Li W., Cui X., Zhou J., Peng F., Dai L. (2021): Earthworm activity optimized the rhizosphere bacterial community structure and further alleviated the yield loss in continuous cropping lily (Lilium lancifolium Thunb.). Scientific Reports, 11: 20840.
Go to original source...
Go to PubMed...
- Lubbers I.M., van Groenigen K.J., Fonte S.J., Six J., Brussaard L., van Groenigen J.W. (2013): Greenhouse-gas emissions from soils increased by earthworms. Nature Climate Change, 3: 187-194.
Go to original source...
- Lv B., Zhang D., Chen Q., Cui Y. (2019): Effects of earthworms on nitrogen transformation and the correspond genes (amoA and nirS) in vermicomposting of sewage sludge and rice straw. Bioresource Technology, 287: 121428.
Go to original source...
Go to PubMed...
- Makoto K., Bryanin S.V., Takagi K. (2019): The effect of snow reduction and Eisenia japonica earthworm traits on soil nitrogen dynamics in spring in a cool-temperate forest. Applied Soil Ecology, 144: 1-7.
Go to original source...
- Makulek G., Kusiñska A. (1997): The role of earthworms (Lumbricidae) in transformations of organic matter and in the nutrient cycling in the soils of ley meadows and permanent meadows. Ekologia Polska, 45: 825-837.
- Mao X., Zheng J., Yu W., Guo X., Xu K., Zhao R., Xiao L., Wang M., Jiang Y., Zhang S., Luo L., Chang J., Shi Z., Luo Z. (2022): Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biology and Biochemistry, 172: 108743.
Go to original source...
- Marashi A.R.A., Scullion J. (2003): Earthworm casts form stable aggregates in physically degraded soils. Biology and Fertility of Soils, 37: 375-380.
Go to original source...
- Marhan S., Scheu S. (2005): Effects of sand and litter availability on organic matter decomposition in soil and in casts of Lumbricus terrestris L. Geoderma, 128: 155-166.
Go to original source...
- McInerney M., Bolger T. (2000): Temperature, wetting cycles and soil texture effects on carbon and nitrogen dynamics in stabilized earthworm casts. Soil Biology and Biochemistry, 32: 335-349.
Go to original source...
- Medina-Sauza R.M., Álvarez-Jiménez M., Delhal A., Reverchon F., Blouin M., Guerrero-Analco J.A., Cerdán C.R., Guevara R., Villain L., Barois I. (2019): Earthworms building up soil microbiota, a review. Frontiers in Environmental Science, 7: 81.
Go to original source...
- Meeds J.A., Kranabetter J.M., Zigg I., Dunn D., Miros F., Shipley P., Jones M.D. (2021): Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME Journal, 15: 1478-1489.
Go to original source...
Go to PubMed...
- Meng L.L., Srivastava A.K., Kuca K., Wu Q.S. (2022): Earthworm (Pheretima guillelmi)-mycorrhizal fungi (Funneliformis mosseae) association mediates rhizosphere responses in white clover. Applied Soil Ecology, 172: 104371.
Go to original source...
- Mohammed A.M., Rida A. (1995): Effect of soil contamination on the role earthworms play in the liberation of potassium. Revue D`Ecologie - La Terre et La Vie, 50: 141-152.
Go to original source...
- Morel C., Tunney P., Plenet D., Pellerin S. (2000): Transfer of phosphate ions between soil and solution: perspectives in soil testing. Journal of Environmental Quality, 29: 50-59.
Go to original source...
- Morris G.M. (1985): Secretory cells in the clitellar epithelium of Eisenia fetida (Annelida, Oligochaeta): a histochemical and ultrastructural study. Journal of Morphology, 185: 89-100.
Go to original source...
Go to PubMed...
- Mueller K.E., Hobbie S.E., Chorover J., Reich P.B., Eisenhauer N., Castellano M.J., Chadwick O.A., Dobies T., Hale C.M., Jagodzinski A.M., Kalucka I., Kieliszewska-Rokicka B., Modrzynski J., Rozen A., Skorupski M., Sobczyk L., Stasinska M., Trocha L.K., Weiner J., Wierzbicka A., Oleksyn J. (2015): Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry, 123: 313-327.
Go to original source...
- Na L., Hu C., Jiang Y., Hu R., Shaaban M., Younas A., Wu Y. (2022): Earthworms promote the transfer of 15N-urea to lettuce while limit appreciably increase 15N losing to environment. Environmental Research, 212: 113423.
Go to original source...
Go to PubMed...
- Nahidan S., Ghasemzadeh M. (2022): Biochemical phosphorus transformations in a calcareous soil as affected by earthworm, cow manure and its biochar additions. Applied Soil Ecology, 170: 104310.
Go to original source...
- Namoi N., Pelster D., Rosenstock T.S., Mwangi L., Kamau S., Mutuo P., Barrios E. (2019): Earthworms regulate ability of biochar to mitigate CO2 and N2O emissions from a tropical soil. Applied Soil Ecology, 140: 57-67.
Go to original source...
- Nebert L.D., Bloem J., Lubbers I.M., van Groenigen J.W. (2011): Association of earthworm-denitrifier interactions with increased emission of nitrous oxide from soil mesocosms amended with crop residue. Applied and Environmental Microbiology, 77: 4097-4104.
Go to original source...
Go to PubMed...
- Needham S.J., Worden R.H., McIlroy D. (2004): Animal-sediment interactions: the effect of ingestion and excretion by worms on mineralogy. Biogeosciences, 1: 113-121.
Go to original source...
- Neto L.D.D., da Silva I.D., Inda A.V., do Nascimento P.C., Bortolon L. (2010): Physical and chemical attributes of pedogenic aggregates and earthworm casts in different soil classes of Paraiba. Ciência e Agrotecnologia, 34: 1365-1371.
Go to original source...
- Nieminen M., Hurme T., Mikola J., Regina K., Nuutinen V. (2015): Impact of earthworm Lumbricus terrestris living sites on the greenhouse gas balance of no-till arable soil. Biogeosciences, 12: 5481-5493.
Go to original source...
- Nigussie A., Bruun S., de Neergaard A., Kuyper T.W. (2017): Earthworms change the quantity and composition of dissolved organic carbon and reduce greenhouse gas emissions during composting. Waste Management, 62: 43-51.
Go to original source...
Go to PubMed...
- Nowak E. (1995): Chemical composition of earthworm casts in different habitats of Poland. Polish Journal of Ecology, 43: 205-215.
- Ortner M., Seidel M., Semella S., Udelhoven T., Vohland M., Thiele-Bruhn S. (2022): Content of soil organic carbon and labile fractions depend on local combinations of mineral-phase characteristics. Soil, 8: 113-131.
Go to original source...
- Oyedele D.J., Schjonning P., Amusan A.A. (2006): Physicochemical properties of earthworm casts and uningested parent soil from selected sites in southwestern Nigeria. Ecological Engineering, 28: 106-113.
Go to original source...
- Ozawa T., Risal C.P., Yanagimoto R. (2005): Increase in the nitrogen content of soil by the introduction of earthworms into soil. Soil Science and Plant Nutrition, 51: 917-920.
Go to original source...
- Padmavathiamma P.K., Li L.Y., Kumari U.R. (2008): An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresource Technology, 99: 1672-1681.
Go to original source...
Go to PubMed...
- Parkin T.B., Berry E.C. (1994): Nitrogen transformations associated with earthworm casts. Soil Biology and Biochemistry, 26: 1233-1238.
Go to original source...
- Paudel S., Longcore T., MacDonald B., McCormick M.K., Szlavecz K., Wilson G.W.T., Loss S.R. (2016): Belowground interactions with aboveground consequences: invasive earthworms and arbuscular mycorrhizal fungi. Ecology, 97: 605-614.
Go to original source...
Go to PubMed...
- Pey B., Cortet J., Watteau F., Cheynier K., Schwartz C. (2013): Structure of earthworm burrows related to organic matter of a constructed Technosol. Geoderma, 202: 103-111.
Go to original source...
- Phillips H.R.P., Guerra C.A., Bartz M.L.C. et al. (2020): Global distribution of earthworm diversity. Science, 369: eabd9834.
- Pingree M.R.A., Makoto K., DeLuca T.H. (2017): Interactive effects of charcoal and earthworm activity increase bioavailable phosphorus in sub-boreal forest soils. Biology and Fertility of Soils, 53: 873-884.
Go to original source...
- Png G.K., Turner B.L., Albornoz F.E., Hayes P.E., Lambers H., Laliberte E. (2017): Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability. Journal of Ecology, 105: 1246-1255.
Go to original source...
- Price-Christenson G.J., Johnston M.R., Herrick B.M., Yannarell A.C. (2020): Influence of invasive earthworms (Amynthas spp.) on Wisconsin forest soil microbial communities and soil chemistry. Soil Biology and Biochemistry, 149: 107955.
Go to original source...
- Puche N., Rumpel C., Le Mer G., Jouquet P., Mazurier A., Caner L., Garnier P., Tran T.M., Bottinelli N. (2022): Mechanisms and kinetics of (de-)protection of soil organic carbon in earthworm casts in a tropical environment. Soil Biology and Biochemistry, 170: 108686.
Go to original source...
- Qiu J., Turner M.G. (2017): Effects of non-native Asian earthworm invasion on temperate forest and prairie soils in the Midwestern US. Biological Invasions, 19: 73-88.
Go to original source...
- Rawlins B.G., Vane C.H., Kim A.W., Tye A.M., Kemp S.J., Bellamy P.H. (2008): Methods for estimating types of soil organic carbon and their application to surveys of UK urban areas. Soil Use and Management, 24: 47-59.
Go to original source...
- Rengel Z., Damon P.M. (2008): Crops and genotypes differ in efficiency of potassium uptake and use. Physiologia Plantarum, 133: 624-636.
Go to original source...
Go to PubMed...
- Ribbons R.R., Kepfer-Rojas S., Kosawang C., Hansen O.K., Ambus P., McDonald M., Grayston S.J., Prescott C.E., Vesterdal L. (2018): Context-dependent tree species effects on soil nitrogen transformations and related microbial functional genes. Biogeochemistry, 140: 145-160.
Go to original source...
- Rizhiya E., Bertora C., van Vliet P.C.J., Kuikman P.J., Faber J.H., van Groenigen J.W. (2007): Earthworm activity as a determinant for N2O emission from crop residue. Soil Biology and Biochemistry, 39: 2058-2069.
Go to original source...
- Robertson J.D. (1936): The function of the calciferous glands of earthworms. Journal of Experimental Biology, 13: 279-297.
Go to original source...
- Rodriguez-Blanco J.D., Shaw S., Benning L.G. (2011): The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale, 3: 265-271.
Go to original source...
Go to PubMed...
- Rowley M.C., Grand S., Verrecchia E.P. (2018): Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, 137: 27-49.
Go to original source...
- Salmon S. (2001): Earthworm excreta (mucus and urine) affect the distribution of springtails in forest soils. Biology and Fertility of Soils, 34: 304-310.
Go to original source...
- Santos A., Cremonesi M.V., Zanatta J.A., Cunha L., Drake H.L., Brown G.G. (2021): Emission of greenhouse gases and soil changes in casts of a giant Brazilian earthworm. Biology and Fertility of Soils, 57: 617-628.
Go to original source...
- Scheu S., Parkinson D. (1994a): Effects of earthworms on nutrient dynamics, carbon turnover and microorganisms in soils from cool temperate forests of the Canadian Rocky Mountains - laboratory studies. Applied Soil Ecology, 1: 113-125.
Go to original source...
- Scheu S., Parkinson D. (1994b): Effects of an invasion of an Aspen woodland (Alberta, Canada) by Dendrobaena octaedra on plant growth. Ecology, 75: 2348-2361.
Go to original source...
- Schmidt O., Scrimgeour C.M., Curry J.P. (1999): Carbon and nitrogen stable isotope ratios in body tissue and mucus of feeding and fasting earthworms (Lumbricus festivus). Oecologia, 118: 9-15.
Go to original source...
Go to PubMed...
- Shah T.I., Rai A.P., Aziz M. (2019): Relationship of phosphorus fractions with soil properties in mothbean growing acid soils of North Western Indian Himalayas. Communications in Soil Science and Plant Analysis, 50: 1192-1198.
Go to original source...
- Sheehy J., Nuutinen V., Six J., Palojarvi A., Knuutila O., Kaseva J., Regina K. (2019): Earthworm Lumbricus terrestris mediated redistribution of C and N into large macroaggregate-occluded soil fractions in fine-textured no-till soils. Applied Soil Ecology, 140: 26-34.
Go to original source...
- Shi Z., Tang Z., Wang C. (2019): Effect of phenanthrene on the physicochemical properties of earthworm casts in soil. Ecotoxicology and Environmental Safety, 168: 348-355.
Go to original source...
Go to PubMed...
- Shipitalo M.J., Protz R. (1989): Chemistry and micromorphology of aggregation in earthworm casts. Geoderma, 45: 357-374.
Go to original source...
- Shrestha R.K., Lal R. (2010): Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma, 157: 196-205.
Go to original source...
- Shu W., Yang Z., Xu Z., Zhu T., Tian X., Yang Y. (2022): Effects of one-dimensional nanomaterial polyaniline nanorods on earthworm biomarkers and soil enzymes. Environmental Science and Pollution Research, 29: 35217-35229.
Go to original source...
Go to PubMed...
- Sierra J., Loranger-Merciris G., Desfontaines L., Boval M. (2014): Aerobic microbial activity in four tropical earthworm-soil systems. A mesocosm experiment. Soil Research, 52: 584-592.
Go to original source...
- Simek M., Pizl V. (1989): The effect of earthworms (Lumbricidae) on nitrogenase activity in soil. Biology and Fertility of Soils, 7: 370-373.
Go to original source...
- Six J., Bossuyt H., Degryze S., Denef K. (2004): A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79: 7-31.
Go to original source...
- Standish R.J., Daws M.I., Morald T.K., Speijers J., Koch J.M., Hobbs R.J., Tibbett M. (2022): Phosphorus supply affects seedling growth of mycorrhizal but not cluster-root forming jarrah-forest species. Plant and Soil, 472: 577-594.
Go to original source...
- Stevenson F.J. (1994): Biochemistry of the formation of humic substances. In: Humus Chemistry: Genesis, composition, reactions. 2nd Edition, New York, John Wiley & Sons, 188-211.
- Suarez E.R., Pelletier D.M., Fahey T.J., Groffman P.M., Bohlen P.J., Fisk M.C. (2004): Effects of exotic earthworms on soil phosphorus cycling in two broadleaf temperate forests. Ecosystems, 7: 28-44.
Go to original source...
- Subler S., Kirsch A.S. (1998): Spring dynamics of soil carbon, nitrogen, and microbial activity in earthworm middens in a no-till cornfield. Biology and Fertility of Soils, 26: 243-249.
Go to original source...
- Suzuki Y., Matsubara T., Hoshino M. (2003): Breakdown of mineral grains by earthworms and beetle larvae. Geoderma, 112: 131-142.
Go to original source...
- Tang Z., Xu W., Zhou G., Bai Y., Li J., Tang X., Chen D., Liu Q., Ma W., Xiong G., He H., He N., Guo Y., Guo Q., Zhu J., Han W., Hu H., Fang J., Xie Z. (2018): Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China's terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115: 4033-4038.
Go to original source...
Go to PubMed...
- Teng S.K. (2012): Evaluation on physical, chemical and biological properties of casts of geophagous earthworm Metaphire tschiliensis tschiliensis. Scientific Research Essays, 7: 1169-1174.
Go to original source...
- Tecimen H.B., Gorres J.H., Melnichuk R.D.S. (2021): Effect of Lumbricus rubellus and Amynthas agrestis earthworms on soil biogeochemistry at the aggregate scale in northern hardwood forests. Journal of Sustainable Forestry, 40: 83-98.
Go to original source...
- Thomas E., Shanti Prabha V., Kurien V.T., Thomas A.P. (2020): The potential of earthworms in soil carbon storage: a review. Environmental and Experimental Biology, 18: 61-75.
Go to original source...
- Tiunov A.V., Scheu S. (2000): Microbial biomass, biovolume and respiration in Lumbricus terrestris L. cast material of different age. Soil Biology and Biochemistry, 32: 265-275.
Go to original source...
- Traore S., Guebre D., Hien E., Traore M., Lee N., Lorenz N., Dick R.P. (2022): Nutrient cycling and microbial responses to termite and earthworm activity in soils amended with woody residues in the Sudano-Sahel. European Journal of Soil Biology, 109: 103381.
Go to original source...
- United States Department of Agriculture - Natural Resources Conservation Service (2009): Soil quality indicators: Total organic carbon. Available at: https://www.nrcs.usda.gov/sites/default/files/2022-10/total_organic_carbon.pdf
- Van Groenigen J.W., Van Groenigen K.J., Koopmans G.F., Stokkermans L., Vos H.M.J., Lubbers I.M. (2019): How fertile are earthworm casts? A meta-analysis. Geoderma, 338: 525-535.
Go to original source...
- Versteegh E.A.A., Black S., Hodson M.E. (2014): Environmental controls on the production of calcium carbonate by earthworms. Soil Biology and Biochemistry, 70: 159-161.
Go to original source...
- Vidal A., Remusat L., Watteau F., Derenne S., Quenea K. (2016): Incorporation of 13C labelled shoot residues in Lumbricus terrestris casts: a combination of transmission electron microscopy and nanoscale secondary ion mass spectrometry. Soil Biology and Biochemistry, 93: 8-16.
Go to original source...
- Vidal A., Watteau F., Remusat L., Mueller C.W., Tu T.T.N., Buegger F., Derenne S., Quenea K. (2019): Earthworm cast formation and development: a shift from plant litter to mineral associated organic matter. Frontiers in Environmental Science, 7: 55.
Go to original source...
- Vitousek P.M., Porder S., Houlton B.Z., Chadwick O.A. (2010): Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20: 5-15.
Go to original source...
Go to PubMed...
- Vos H.M.J., Koopmans G.F., Beezemer L., de Goede R.G.M., Hiemstra T., van Groenigen J.W. (2019): Large variations in readily-available phosphorus in casts of eight earthworm species are linked to cast properties. Soil Biology and Biochemistry, 138: 107583.
Go to original source...
- Vos H.M.J., Ros M.B.H., Koopmans G.F., van Groenigen J.W. (2014): Do earthworms affect phosphorus availability to grass? A pot experiment. Soil Biology and Biochemistry, 79: 34-42.
Go to original source...
- Wang M., Guo X., Zhang S., Xiao L., Mishra U., Yang Y., Zhu B., Wang G., Mao X., Qian T., Jiang T., Shi Z., Luo Z. (2022): Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nature Communications, 13: 5514.
Go to original source...
Go to PubMed...
- Wang X., Fu S., Wang X., Li Z., Li J., Zhang W. (2021a): One-year monitoring of daily earthworm cast production: surface cast contribution to soil fertility in a subtropical forest. Forests, 12: 865.
Go to original source...
- Wang N., Wang W., Jiang Y., Dai W., Li P., Yao D., Wang J., Shi Y., Cui Z., Cao H., Dong Y., Wang H. (2021b): Variations in bacterial taxonomic profiles and potential functions in response to the gut transit of earthworms (Eisenia fetida) feeding on cow manure. Science of the Total Environment, 787: 147392.
Go to original source...
Go to PubMed...
- Wei Y., Liu M., Wang J., Dang X., Han Y. (2022): The effects of vegetation communities on soil organic carbon stock in an enclosed desert-steppe region of northern China. Soil Science and Plant Nutrition, 68: 284-294.
Go to original source...
- Wolters V., Joergensen R.G. (1992): Microbial carbon turnover in beech forest soils worked by Aporrectodea caliginosa (Savigny) (Oligochaeta, Lumbricidae). Soil Biology and Biochemistry, 24: 171-177.
Go to original source...
- Wu F., Wan J.H.C., Wu S., Wong M. (2012): Effects of earthworms and plant growth-promoting rhizobacteria (PGPR) on availability of nitrogen, phosphorus, and potassium in soil. Journal of Plant Nutrition and Soil Science, 175: 423-433.
Go to original source...
- Wu J., Li H., Zhang W., Li F., Huang J., Mo Q., Xia H. (2017): Contrasting impacts of two subtropical earthworm species on leaf litter carbon sequestration into soil aggregates. Journal of Soils and Sediments, 17: 1672-1681.
Go to original source...
- Xu H., Zhang C. (2021): Investigating spatially varying relationships between total organic carbon contents and pH values in European agricultural soil using geographically weighted regression. Science of the Total Environment, 752: 141977.
Go to original source...
Go to PubMed...
- Yang L., Yang Z., Peng Y., Lin Y., Xiong D., Li Y., Yang Y. (2019): Evaluating P availability influenced by warming and N deposition in a subtropical forest soil: a bioassay mesocosm experiment. Plant and Soil, 444: 87-99.
Go to original source...
- Zaller J.G., Wechselberger K.F., Gorfer M., Hann P., Frank T., Wanek W., Drapela T. (2013): Subsurface earthworm casts can be important soil microsites specifically influencing the growth of grassland plants. Biology and Fertility of Soils, 49: 1097-1107.
Go to original source...
Go to PubMed...
- Zhang J., Sun C., Liu G., Xue S. (2018): Effects of long-term fertilisation on aggregates and dynamics of soil organic carbon in a semi-arid agro-ecosystem in China. PeerJ, 6: e4758.
Go to original source...
Go to PubMed...
- Zhang P.P., Zhang Y.L., Jia J.C., Cui Y.X., Wang X., Zhang X.C., Wang Y.Q. (2020): Revegetation pattern affecting accumulation of organic carbon and total nitrogen in reclaimed mine soils. PeerJ, 8: e8563.
Go to original source...
Go to PubMed...
- Zhang W., Hendrix P.F., Dame L.E., Burke R.A., Wu J., Neher D.A., Li J., Shao Y., Fu S. (2013): Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization. Nature Communications, 4: 2576.
Go to original source...
Go to PubMed...
- Zhu X., Lian B., Yang X., Liu C., Zhu L. (2013): Biotransformation of earthworm activity on potassium-bearing mineral powder. Journal of Earth Science, 24: 65-74.
Go to original source...
- Zorb C., Senbayram M., Peiter E. (2014): Potassium in agriculture - status and perspectives. Journal of Plant Physiology, 171: 656-669.
Go to original source...
Go to PubMed...
- Zuccarini P., Asensio D., Ogaya R., Sardans J., Penuelas J. (2020): Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland. Global Change Biology, 26: 3698-3714.
Go to original source...
Go to PubMed...
- Zurovec O., Wall D.P., Brennan F.P., Krol D.J., Forrestal P.J., Richards K.G. (2021): Increasing soil pH reduces fertiliser derived N2O emissions in intensively managed temperate grassland. Agriculture, Ecosystems and Environment, 311: 107319.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.