Plant Soil Environ., 2023, 69(12):586-595 | DOI: 10.17221/209/2023-PSE

Impact of seed coating with superabsorbent polymers on morphological, physiological and production traits of maize (Zea mays L.)Original Paper

Marek Rašovský ORCID...1, Vladimír Pačuta1, Ján Gažo1, Nika Briediková1, Dominika Lenická1, Beata Michalska-Klimczak2, Zdzislaw Wyszyňski2
1 Institute of Agronomical Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
2 Department of Agronomy, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Warsaw, Poland

Due to ongoing climate change, the need for the application of adaptive strategies in agriculture is increasing, particularly in areas with insufficient rainfall, high temperatures and weather fluctuations during the vegetation period. Therefore, an experiment was conducted in 2020 and 2021 to determine the influence of superabsorbent polymers (SAPs) on morphological, physiological and production traits of maize. SAPs were applied using a method of seed coating, which is considered cost-effective and environmentally friendly. Due to the impact of SAPs, significantly larger weights of leaves and roots, as well as the length of roots in the initial growth stage, were found. Furthermore, the SAP treatment condition found significantly larger values of leaf relative water content and spectral indexes PRI (photochemical reflectance index) and NDVI (normalised difference vegetation index). Applying SAPs also led to a significant increase in spikes per plot and grain yield of maize. Moreover, the results significantly impact the interaction between year and treatment. The correlation analysis indicates a higher correlation between the observed traits in the SAPs treatment condition, which subsequently impacted the final maize production. These results confirm that applying SAPs can be considered a suitable strategy for mitigating the impacts of adverse weather conditions, especially in terms of sustainability and maintaining maize production.

Keywords: spectral indices; WinRhizo; adaptability; field conditions

Received: May 24, 2023; Revised: October 30, 2023; Accepted: October 31, 2023; Prepublished online: December 8, 2023; Published: December 20, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Rašovský M, Pačuta V, Gažo J, Briediková N, Lenická D, Michalska-Klimczak B, Wyszyňski Z. Impact of seed coating with superabsorbent polymers on morphological, physiological and production traits of maize (Zea mays L.). Plant Soil Environ. 2023;69(12):586-595. doi: 10.17221/209/2023-PSE.
Download citation

References

  1. Ahmad I., Ahmad B., Boote K., Hoogenboom G. (2020): Adaptation strategies for maize production under climate change for semiarid environ-ments. European Journal of Agronomy, 115: 126040. Go to original source...
  2. Alonso L., Van Wittenberghe S., Amorós-López J., Vila-Francés J., Gómez-Chova L., Moreno J. (2017): Diurnal cycle relationships between pas-sive fluorescence, PRI and NPQ of vegetation in a controlled stress experiment. Remote Sensing, 9: 770. Go to original source...
  3. Araus J.L., Serret M.D., Edmeades G.O. (2012): Phenotyping maize for adaptation to drought. Frontiers in Physiology, 3: 305. Go to original source... Go to PubMed...
  4. Bassu S., Brisson N., Durand J.-L., Boote K., Lizaso J., Jones J.W., Rosenzweig C., Ruane A.C., Adam M., Baron C., Basso B., Biernath C., Boogaard H., Conijn S., Corbeels M., Deryng D., De Sanctis G., Gayler S., Grassini P., Hatfield J., Hoek S., Izaurralde C., Jongschaap R., Kemanian A.R., Kersebaum K.C., Kim S.-H., Kumar N.S., Makowski D., Müller C., Nendel C., Priesack E., Pravia M.V., Sau F., Shcherbak I., Tao F.L., Teixeira E., Timlin D., Waha K. (2014): How do various maize crop models vary in their responses to climate change factors? Global Change Biology, 20: 2301-2320. Go to original source... Go to PubMed...
  5. Blodgett A.M., Beattie D.J., White J.W., Elliott G.C. (1993): Hydrophilic polymers and wetting agents affect absorption and evaporative water loss. HortScience, 28: 633-635. Go to original source...
  6. Bouma T.J., Nielsen K.L., Koutstaal B. (2000): Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant and Soil, 218: 185-196. Go to original source...
  7. Carlson T., Ripley D.A. (1997): On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62: 241-252. Go to original source...
  8. Chang L., Xu L., Liu Y., Qiu D. (2021): Superabsorbent polymers used for agricultural water retention. Polymer Testing, 94: 107021. Go to original source...
  9. Chávez-Arias C.C., Lagarreto-Moreno G.A., Ramirez-Godoy A., Restrepo-Diaz H. (2021): Maize responses challenged by drought, elevated daytime temperature and arthropod herbivory stresses: a physiological, biochemical and molecular view. Frontiers in Plant Science, 12: 702841. Go to original source... Go to PubMed...
  10. Cheng W.M., Hu X.M., Wang D.M., Liu G.H. (2015): Preparation and characteristics of corn straw-Co-AMPS-Co-AA superabsorbent hydrogel. Polymers, 7: 2431-2445. Go to original source...
  11. Cheng Y.-B., Middleton E.M., Zhang Q., Huemmrich K.F., Campbell P.K.E., Corp L.A., Cook B.D., Kustas W.P., Daughtry C.S. (2013): Integrating solar induced fluorescence and the photochemical reflectance index for estimating gross primary production in a cornfield. Remote Sensing, 5: 6857-6879. Go to original source...
  12. De Barros A.F., Pimentel L.D., Araujo E.F., De Macedo L.R., Martinez H.E.P., Batista V.A.P., Da Paixão M.Q. (2017): Super absorbent polymer application in seeds and planting furrow: it will be a new opportunity for rainfed agriculture. Semina: Ciencias Agrarias, 38: 1703. Go to original source...
  13. Devasree S., Ganesan K.N., Ravikesavan R., Natesan S., Paranidharan V. (2020): Relationship between yield and its component traits for enhancing grain yield in single cross hybrids of maize (Zea mays L.). Electronic Journal of Plant Breeding, 11: 796-802. Go to original source...
  14. Devi M.J., Reddy V.R., Timlin D. (2022): Drought-induced responses in maize under different vapor pressure deficit conditions. Plants, 11: 2771. Go to original source... Go to PubMed...
  15. Din M., Zheng W., Rashid M., Wang S., Shi Z. (2017): Evaluating hyperspectral vegetation indices for leaf area index estimation of Oryza sativa L. at diverse phenological stages. Frontiers in Plant Science, 8: 820. Go to original source... Go to PubMed...
  16. Dwyer L., Stewart D.W., Tollenaar M. (1992): Analysis of corn leaf photosynthesis under drought stress. Canadian Journal of Plant Science, 72: 477-481. Go to original source...
  17. Farinas M.D., Jimenez-Carretero D., Sancho-Knapik D., Peguero-Pina J.J., Gil-Pelegrin E., Álvarez-Arenas T.G. (2019): Instantaneous and non-destructive relative water content estimation from deep learning applied to resonant ultrasonic spectra of plant leaves. Plant Methods, 15: 128. Go to original source... Go to PubMed...
  18. Finch-Savage W.E., Bassel G.W. (2016): Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67: 567-591. Go to original source... Go to PubMed...
  19. FAO (2022): Food and Agriculture Organisation of the United Nations, Rome. Available online: http://www.fao.org/faostat/en/#data/QC (ac-cessed on 18 October 2022)
  20. Gamon J.A. (2015): Reviews and syntheses: optical sampling of the flux tower footprint. Biogeosciences, 12: 4509-4523. Go to original source...
  21. Gamon J.A., Peñuelas J., Fiekl C.B. (1992): A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41: 35-44. Go to original source...
  22. González L., González-Vilar M. (2001): Determination of relative water content. In: Reigosa Roger M.J. (ed.): Handbook of Plant Ecophysiology Techniques. Dordrecht, Springer. ISBN: 978-0-7923-7053-6
  23. Gorim L., Asch F. (2012): Effects of composition and share of seed coatings on the mobilization efficiency of cereal seeds during germination. Journal Agronomy and Crop Science, 198: 81-91. Go to original source...
  24. Gray S.B., Brady S.M. (2016): Plant developmental responses to climate change. Develepmental Biology, 419: 64-77. Go to original source... Go to PubMed...
  25. Gubišová M., Hudcovičová M., Matušinský P., Ondreičková K., Klčová L., Gubiš J. (2021): Superabsorbent polymer seed coating reduces leaching of fungicide but does not alter their effectiveness in suppressing pathogen infestation. Polymers, 14: 76. Go to original source... Go to PubMed...
  26. Hassan H.M., Arafat E.F.A., Sabagh E.L. (2016): Genetic studies on agro-morphological traits in rice (Oryza sativa L.) under water stress condi-tions. Journal of Agricultural Biotechnology, 1: 76-84.
  27. Hlavinka P., Trnka M., Semerádová D., Dubrovský M., Žalud Z., Možný M. (2009): Effect of drought on yield variability of key crops in Czech Republic. Agricultural and Forest Meteorology, 149: 431-442. Go to original source...
  28. Kabala C., Musztyfaga E., Galka B., Labuńska D., Mańczyńska P. (2016): Conversion of soil pH 1:2.5 KCl and 1:2.5 H2O to 1:5 H2O: conclusions for soil management, environmental monitoring, and international soil databases. Polish Journal of Environmental Studies, 25: 647-653. Go to original source...
  29. Koch F.C., McMeekin T.L. (1924): A new direct nesslerization Micro-Kjeldahl method and a modification of the Nessler-folin reagent for ammonia. Journal of the American Chemical Society, 46: 2066-2069. Go to original source...
  30. Kononova M.M. (1975): Humus of virgin and cultivated soils. In: Gieseking J.E. (ed.): Soil Components. Berlin, Heidelberg, Springer. ISBN: 978-3-642-65919-5 Go to original source...
  31. Kožnarová V., Klabzuba J. (2002): Recommendation of world meteorological organization to describing meteorological or climatological condi-tions. Rostlinná Výroba, 48: 190-192. Go to original source...
  32. Mahesh G., Lal G., Thupakula V.K., Reddy Y.V.S., Nalla S. (2022): Correlation and path coefficient analysis for grain yield components in maize (Zea mays L.). International Journal of Plant and Soil Science, 34: 24-36. Go to original source...
  33. Malik S., Chaudhary K., Malik A., Punia H., Sewhag M., Berkesia N., Nagora M., Kalia S., Malik K., Kumar D., Kumar P., Kamboj E., Ahlawat V., Kumar A., Boora K. (2023): Superabsorbent polymers as a soil amendment for increasing agriculture production with reducing water losses un-der water stress condition. Polymers, 15: 161. Go to original source... Go to PubMed...
  34. Mangold J.M., Sheley R.L. (2007): Effects of soil texture, watering frequency, and a hydrogel on the emergence and survival of coated and uncoated crested wheatgrass seeds. Ecological Restoration, 25: 6-11. Go to original source...
  35. Mehlich A. (1984): Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409-1416. Go to original source...
  36. Omoyo N.N., Wakhungu J., Otengi S. (2015): Effects of climate variability on maize yield in the arid and semiarid lands of lower eastern Kenya. Agriculture and Food Security, 4: 8. Go to original source...
  37. Pačuta V., Rašovský M., Michalska-Klimczak B., Wyszyński Z. (2021): Impact of superabsorbent polymers and variety on yield, quality and phys-iological parameters of the sugar beet (Beta vulgaris prov. Altissima Doell). Plants, 10: 757. Go to original source... Go to PubMed...
  38. Panáková Z., Slamka P., Ložek O. (2016): Effect of nitrification inhibitors on the content of available nitrogen forms in the soil under maize (Zea mays, L.) growing. Journal of Central European Agriculture, 17: 1013-1032. Go to original source...
  39. Pathak V., Kingsly Ambrose R.P. (2019): Starch-based biodegradable hydrogel as seed coating for corn to improve early growth under water shortage. Journal of Applied Polymer Science, 137: 48523. Go to original source...
  40. Perera K.T.G.K., Weerasinghe T.K. (2014): A study on the impacts of corn cultivation (Zea mays (L.) family - Poaceae) on the properties of soil. International Journal of Scientific and Research Publications, 4: 7. Go to original source...
  41. Rosenzweig C., Hillel D. (2012): Climate Change and the Global Harvest: Potential Effects of the Greenhouse Effect on Agriculture. New York, Oxford University Press, 324.
  42. Sabagh A.E.L., Hossain A., Barutçular C., Abdelaal K., Fahad S., Anjorin F., Islam M.S., Ratnasekera D., Kizilgeçi F., Yadav G.S., Yildirim M.E., Konuskan O., Saneoka H. (2018): Sustainable maize (Zea mays L.) production under drought stress by understanding its adverse effect, survival mechanism and drought tolerance indices. Journal of Experimental Biology and Agricultural Sciences, 6: 282-295. Go to original source...
  43. Saha A., Sekharan S., Manna U. (2020): Superabsorbent hydrogel (SAH) as a soil amendment for drought management: a review. Soil and Tillage Research, 204: 104736. Go to original source...
  44. Sainju U.M. (2017): Determination of nitrogen balance in agroecosystems. MethodsX, 4: 199-208. Go to original source... Go to PubMed...
  45. Sarlikioti V., Driever S.M., Marcelis L.F.M. (2010): Photochemical reflectance index as a mean of monitoring early water stress. Annals of Applied Biology, 157: 81-89. Go to original source...
  46. Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., Battaglia M.L. (2021): Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10: 259. Go to original source... Go to PubMed...
  47. Sheoran S., Kaur Y., Kumar S., Shukla S., Rakshit S., Kumar R. (2022): Recent advances for drought stress tolerance in maize (Zea mays L.): present status and future prospects. Frontiers in Plant Science, 13: 872566. Go to original source... Go to PubMed...
  48. Statsoft.com. (2016): STATISTICA | New Features in STATISTICA 12. [online] Available at: <http://www.statsoft.com/Products/STATISTICA-Features/Version-12> (accessed 8 March 2023)
  49. Su L., Li J., Xue H., Wang X. (2017): Super absorbent polymer seed coatings promote seed germination and seedling growth of Caragana korshinskii in drought. Journal of Zhejiang University-SCIENCE B, 18: 696-706. Go to original source... Go to PubMed...
  50. Tucker C.J., Pinzon J.E., Brown M.E., Slayback D.A., Pak E.W., Mahoney R., El Saleous N. (2005): An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26: 4485-4498. Go to original source...
  51. Yang W., Guo S., Li P., Song E., Yu J. (2018): Foliar antitranspirant and soil superabsorbent hydrogel affect photosynthetic gas exchange and water use efficiency of maize grown under low rainfall conditions. Journal of the Science of Food and Agriculture, 99: 350-359. Go to original source... Go to PubMed...
  52. Yazdani F., Allahdadi I., Akbari G.A. (2007): Impact of superabsorbent polymer on yield and growth analysis of soybean (Glycine max L.) under drought stress condition. Pakistan Journal of Biological Sciences, 10: 4190-4196. Go to original source... Go to PubMed...
  53. Zhou X., Zhang J., Chen D., Huang Y., Kong W., Yuan L., Ye H., Huang W. (2020): Assessment of leaf chlorophyll content models for winter wheat using Landsat-8 multispectral remote sensing data. Remote Sensing, 12: 2574. Go to original source...
  54. Zvinavashe A.T., Laurent J., Mhada M., Sun H., Fouda H.M.E., Kim D., Mouhib S., Kousni L., Marelli B. (2021): Programmable design of seed coating function induces water-stress tolerance in semi-arid regions. Nature Food, 2: 485-493. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.