Plant Soil Environ., 2023, 69(12):615-627 | DOI: 10.17221/306/2023-PSE

Polymorphism of Bolivian accessions of Arachis hypogaea L. revealed by allergen coding DNA markersOriginal Paper

Jana Žiarovská1, Lucia Urbanová2, Julio Montero-Torres3, Adam Kováčik1, Lucia Klongová2, Rohit Bharati4, Sandra Romero-Ortega3, Eloy Fernández-Cusimamani4, Olga Leuner4
1 Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Institute of Plant and Environmental Sciences, Nitra, Slovak Republic
2 Slovak University of Agriculture in Nitra, Research Centre of AgroBioTech, Nitra, Slovak Republic
3 Major, Real and Pontifical University of San Francisco Xavier in Chuquisaca, Faculty of Agricultural Sciences, Germplasm Bank – BIORENA, Sucre, Bolivia
4 Czech University of Life Sciences Prague, Faculty of Tropical AgriSciences, Department of Crop Sciences and Agroforestry, Prague, Czech Republic

Arachis hypogaea L. is an annual legume that is one of the most consumed plant species. On the other hand, it belongs to one of the most monitored clinically important allergens worldwide. The polymorphism of this species based on allergen coding genes could be useful in its characterisation, but previously, no allergen-based marker techniques have been developed for peanuts. A new type of DNA-based markers of coding regions were used to analyse the variability of 21 peanut accessions – BBAP (Bet v1 based amplicon polymorphism), PBAP (profilin based amplicon polymorphism), and VBAP (vicilin based amplicon polymorphism). All of the used technique provided polymorphic fingerprints and distinguished the analysed peanut accessions. The effectivity of these techniques corresponds to the presence of the allergen homologous sequences that are a part of the A. hypogaea genome. VBAP was the most effective in distinguishing the analysed peanut accessions when compared to the results of BBAP and PBAB. For BBAP, two of the analysed accessions provided the same fingerprinting pattern. The ability of the used markers to detect polymorphisms was comparable, with an average polymorphism information content (PIC) value of 0.47.

Keywords: allergen markers; DNA analysis; food safety; genetic resources; peanut accessions

Received: July 27, 2023; Revised: November 14, 2023; Accepted: November 15, 2023; Prepublished online: December 17, 2023; Published: December 20, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Žiarovská J, Urbanová L, Montero-Torres J, Kováčik A, Klongová L, Bharati R, et al.. Polymorphism of Bolivian accessions of Arachis hypogaea L. revealed by allergen coding DNA markers. Plant Soil Environ. 2023;69(12):615-627. doi: 10.17221/306/2023-PSE.
Download citation

References

  1. Alessandri C., Ferrara R., Bernardi M.L., Zennaro D., Tuppo L., Giangrieco I., Ricciardi T., Tamburrini M., Ciardiello M.A., Mari A. (2020): Molecular approach to a patient's tailored diagnosis of the oral allergy syndrome. Clinical and Translatory Allergy, 10: 22. Go to original source... Go to PubMed...
  2. Astwood J.D., Silvanovich A., Bannon G.A. (2002): Vicilins: a case study in allergen pedigrees. Journal of Allergy and Clinical Immunology, 110: 26-27. Go to original source... Go to PubMed...
  3. Ballmer-Weber B.K., Fernandez-Rivas M., Beyer K., Defernez M., Sperrin M., Mackie A.R., Salt L.J., Hourihane J.O., Asero R., Belohlavkova S., Kowalski M., de Blay F., Papadopoulos N.G., Clausen M., Knulst A.C., Roberts G., Popov T., Sprikkelman A.B., Dubakiene R., Vieths S., Vanree R., Crevel R., Mills E.N.C. (2015): How much is too much? Threshold dose distributions for 5 food allergens. Journal of Allergy and Clinical Immunology, 135: 964-971. Go to original source... Go to PubMed...
  4. Barre A., Sordet C., Culerrier R., Rancé F., Didier A., Rougé P. (2008): Vicilin allergens of peanut and tree nuts (walnut, hazelnut and cashew nut) share structurally related IgE-binding epitopes. Molecular Immunology, 45: 1231-1240. Go to original source... Go to PubMed...
  5. Benz B. (2012): The conservation of cultivated plants. Natural Education Knowledge, 3: 4.
  6. Berkner H., Neudecker P., Mittag D., Ballmer-Weber B.K., Schweimer K., Vieths S., Rösch P. (2009): Cross-reactivity of pollen and food allergens: soybean Gly m 4 is a member of the Bet v 1 superfamily and closely resembles yellow lupine proteins. Bioscience Reports, 29: 183-192. Go to original source... Go to PubMed...
  7. Bošeľová D., Žiarovská J., Hlavačková L., Ražná K., Bežo M. (2016): Comparative analysis of different methods of Hedera helix DNA extraction and molecular evidence of the functionality in PCR. Acta Fytotechnica et Zootechnica, 19: 144-149. Go to original source...
  8. Breiteneder H., Ebner C. (2000): Molecular and biochemical classification of plant-derived food allergens. Journal of Allergy and Clinical Immu-nology, 106: 27-36. Go to original source... Go to PubMed...
  9. Breiteneder H., Ebner C. (2001): Atopic allergens of plant foods. Current Opinion in Allergy and Clinical Immunology, 1: 261-267. Go to original source...
  10. Croote D., Darmanis S., Nadeau K.C., Quake S.R. (2018): High-affinity allergen-specific human antibodies cloned from single IgE B cell transcrip-tomes. Science, 362: 1306-1309. Go to original source... Go to PubMed...
  11. Cuc L.M., Mace E.S., Crouch J.H., Quang V.D., Long T.D., Varshney R.V. (2008): Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biology, 8: 55. Go to original source... Go to PubMed...
  12. De Riek J., Calsyn E., Everaert I., Van Bockstaele E., De Loose M. (2001): AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theoretical and Applied Genetics, 103: 1254-1265. Go to original source...
  13. Dillehay T.D., Rossen J., Andres T.C., Williams D.E. (2007): Preceramic adoption of peanut, squash, and cotton in northern Peru. Science, 316: 1890-1893. Go to original source... Go to PubMed...
  14. Dooper M.M., Plassen C., Holden L., Lindvik H., Faeste C.K. (2009): Immunoglobulin E cross-reactivity between lupine conglutins and peanut allergens in serum of lupine-allergic individuals. Journal of Investigational Allergology and Clinical Immunology, 19: 283-291.
  15. Dunwell J.M., Purvis A., Khuri S. (2004): Cupins: the most functionally diverse protein superfamily? Phytochemistry, 65: 7-17. Go to original source... Go to PubMed...
  16. FAO - ALENU (2020) project. Available at: https://www.fao.org/family-farming/detail/en/c/1637500/ (accessed 20. 10. 2023)
  17. FAOSTAT (2021): Food and Agriculture Organisation of the United Nations Statistics Division, Rome. Available at: http://faostat3.fao.org/download/Q/QC/E (cited 20. 10. 2023)
  18. Fernandes H., Michalska K., Sikorski M., Jaskolski M. (2013): Structural and functional aspects of PR-10 proteins. FEBS Journal, 280: 1169-1199. Go to original source... Go to PubMed...
  19. Führer S., Kamenik A.S., Zeindl R., Nothegger B., Hofer F., Reider N., Tollinger M. (2021): Inverse relation between structural flexibility and IgE reactivity of Cor a 1 hazelnut allergens. Scientific Reports, 11: 4173. Go to original source... Go to PubMed...
  20. Gajhede M., Osmark P., Poulsen F.M., Ipsen H., Larsen J.N., Van Neerven R.J., Spangfort M.D. (1996): X-ray and NMR structure of Bet v 1, the origin of birch pollen allergy. Nature Structural Biology, 3: 1040-1045. Go to original source... Go to PubMed...
  21. Gayathri M., Shirasawa K., Varshney R.K., Pandey M.K., Bhat R.S. (2018): Development of AhMITE1 markers through genome-wide analysis in peanut (Arachis hypogaea L.). BMC Research Notes, 11: 10. Go to original source... Go to PubMed...
  22. Gimenes M.A., Hoshino A.A., Barbosa A.V., Palmieri D.A., Lopes C.R. (2007): Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biology, 7: 1-13. Go to original source... Go to PubMed...
  23. Gorji A.M., Poczai P., Polgar Z., Taller J. (2011): Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. American Journal of Potato Research, 88: 226-237. Go to original source...
  24. He G., Meng R., Gao H., Guo B., Gao G., Newman M., Pittman R.N., Prakash C.S. (2005): Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica, 142: 131-136. Go to original source...
  25. Hilu K.W., Friend S.A., Vallanadu V., Brown A.M., Hollingsworth IV L.R., Bevan D.R. (2019): Molecular evolution of genes encoding allergen proteins in the peanuts genus Arachis: structural and functional implications. Plos One, 14: e0222440. Go to original source... Go to PubMed...
  26. Hong Y., Pandey M.K., Lu Q., Liu H., Gangurde S.S., Li S., Liu H., Li H., Liang X., Varshney R.K., Chen X. (2021): Genetic diversity and distinctness based on morphological and SSR markers in peanut. Agronomy Journal, 113: 4648-4660. Go to original source...
  27. Hurlburt B.K., Offermann L.R., McBride J.K., Majorek K.A., Maleki S.J., Chruszcz M. (2013): Structure and function of the peanut panallergen Ara h 8. The Journal of Biological Chemistry, 288: 36890-36901. Go to original source... Go to PubMed...
  28. Jaccard P. (1908): New research on floral distribution. Bulletin de la Société vaudoise des Sciences Naturelles, 44: 223-270.
  29. Jatoi S.A., Kikuchi A., Ahmad D., Watanabe K.N. (2010): Characterization of the genetic structure of mango ginger (Curcuma amada Roxb.) from Myanmar in farm and genebank collection by the neutral and functional genomic markers. Electronic Journal of Biotechnology, 13: 4-5. Go to original source...
  30. Klongová L., Kováčik A., Urbanová L., Kyseľ M., Ivanišová E., Žiarovská J. (2021): Utilization of specific primers in legume allergens based poly-morphism screening. Science, Technology and Innovation, 13: 5431. Go to original source...
  31. Koppelman S.J., Wensing M., Ertmann M., Knulst A.C., Knol E.F. (2004): Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clinical and Experimental Allergy, 34: 583-590. Go to original source... Go to PubMed...
  32. Krapovickas A., Gregory W.C., Williams D.E., Simpson C.E. (2007): Taxonomy of the genus Arachis (Leguminosae). Bonplandia, 16: 7-205. Go to original source...
  33. Lu Q., Liu H., Hong Y., Li H., Liu H., Li X., Wen S., Zhou G., Li S., Chen X., Liang X. (2018): Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.). BMC Genomics, 19: 887. Go to original source... Go to PubMed...
  34. Luo H., Xu Z., Li Z., Li X., Lv J., Ren X., Huang L., Zhou X., Chen Y., Yu J., Chen W., Lei Y., Liao B., Jiang H. (2017): Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theoretical and Ap-plied Genetics, 130: 1635-1648. Go to original source... Go to PubMed...
  35. Mittag D., Akkerdaas J., Ballmer-Weber B.K., Vogel L., Wensing M., Becker W.M., Vieths S. (2004): Ara h 8, a Bet v 1 - homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. Journal of Allergy and Clinical Immunology, 114: 1410-1417. Go to original source... Go to PubMed...
  36. Mondal S., Badigannavar A.M., Murty G.S.S. (2007): RAPD markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica, 159: 233-239. Go to original source...
  37. Montero-Torrez J., Zamiešková L., Pozzo T., Cussimamani E.F., Romero-Ortega S., Bilcikova J., Ziarovska J. (2020): Genomic fingerprints of Arachis hypogaea L. natural germplasm as revealed by iPBS markers. Journal of Microbiology, Biotechnology and Food Sciences, 9: 955-959. Go to original source...
  38. Moretzsohn M.C., Gouvea E.G., Inglis P.W., Leal-Bertioli S.C.M., Valls J.F.M., Bertioli D.J. (2013): A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Annals of Botany, 111: 113-126. Go to original source... Go to PubMed...
  39. Mueller G.A., Maleki S.J., Pedersen L.C. (2014): The molecular basis of peanut allergy. Current Allergy and Asthma Reports, 14: 1-9. Go to original source... Go to PubMed...
  40. Pakseresht F., Talebi R., Karami E. (2013): Comparative assessment of ISSR, DAMD and SCoT markers for evaluation of genetic diversity and conservation of landrace chickpea (Cicer arietinum L.) genotypes collected from north-west of Iran. Physiology and Molecular Biology of Plants, 19: 563-574. Go to original source... Go to PubMed...
  41. Pandey M.K., Gautami B., Jayakumar T., Sriswathi M., Upadhyaya H.D., Gowda M.V.C., Radhakrishnan T., Bertioli D.J., Knapp S.J., Cook D.R., Varshney R.K. (2012): Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hy-pogaea). Plant Breeding, 131: 139-147. Go to original source...
  42. Proite K., Leal-Bertioli S., Bertioli D.J., Moretzsohn M.C., da Silva F.R., Martins N.F., Guimarães P.M. (2007): ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biology, 7: 1-10. Go to original source... Go to PubMed...
  43. Raina S.N., Rani V., Kojima T., Ogihara Y., Singh K.P., Devarumath R.M. (2001): RAPD and ISSR fingerprints as useful genetic markers for analy-sis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome, 44: 763-772. Go to original source...
  44. Roldán-Ruiz I., Dendauw J., Van Bockstaele E., Depicker A., De Loose M. (2000): AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding, 6: 125-134. Go to original source...
  45. Sai D.K., Rani K.R., Usha R. (2016): Assessment of genetic diversity in groundnut (Arachis hypogaea L.) genotypes using PCR based RAPD mark-ers. Biotechnology Resources, 2: 142-147.
  46. Seutter von Loetzen C., Schweimer K., Schwab W., Rösch P., Hartl-Spiegelhauer O. (2012): Solution structure of the strawberry allergen Fra a 1. Bioscience Reports, 32: 567-575. Go to original source... Go to PubMed...
  47. Seyedimoradi H., Talebi R., Fayaz F. (2016): Geographical diversity pattern in Iranian landrace durum wheat (Triticum turgidum) accessions using start codon targeted polymorphism and conserved DNA-derived polymorphism markers. Environmental and Experimental Biology, 14: 63-68. Go to original source...
  48. Shahlaei A., Torabi S., Khosroshahli M. (2014): Efficacy of SCoT and ISSR markers in assessment of tomato (Lycopersicum esculentum Mill.) genetic diversity. International Journal of Biosciences, 5: 14-22. Go to original source...
  49. Shewry P.R., Napier J.A., Tatham A.S. (1995): Seed storage proteins: structures and biosynthesis. The Plant Cell, 7: 945-956. Go to original source... Go to PubMed...
  50. Shirasawa K., Bertioli D.J., Varshney R.K., Moretzsohn M.C., Leal-Bertioli S.C., Thudi M., Pandey M.K., Rami J.F., Foncéka D., Gowda M.V.C., Qin H., Guo B., Hong Y., Liang X., Hirakawa H., Tabata S., Isobe S. (2013): Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Resources, 20: 173-184. Go to original source... Go to PubMed...
  51. Sinha M., Singh R.P., Kushwaha G.S., Iqbal N., Singh A., Kaushik S., Singh T.P. (2014): Current overview of allergens of plant pathogenesis related protein families. The Scientific World Journal, 16: 543195. Go to original source... Go to PubMed...
  52. Speváková I., Urbanová L., Kyseľ M., Bilčíková J., Farkasová S., Žiarovská J. (2021): BBAP amplification profiles of apple varieties. Science, Tech-nology and Innovation, 13: 1-6. Go to original source...
  53. Uehara M., Sato K., Abe Y., Katagiri M. (2001): Sequential IgE epitope analysis of a birch pollen allergen (Bet v1) and an apple allergen (Mal d1). Allergology International, 50: 57-62. Go to original source...
  54. Valenta R., Duchene M., Vrtala S., Birkner T., Ebner C., Hirschwehr R., Kraft D. (1991): Recombinant allergens for immunoblot diagnosis of tree-pollen allergy. Journal of Allergy and Clinical Immunology, 88: 889-894. Go to original source... Go to PubMed...
  55. Vereda A., van Hage M., Ahlstedt S., Ibañez M.D., Cuesta-Herranz J., van Odijk J., Sampson H.A. (2011): Peanut allergy: clinical and immunologic differences among patients from 3 different geographic regions. Journal of Allergy and Clinical Immunology, 127: 603-607. Go to original source... Go to PubMed...
  56. Viquez O.M., Konan K.N., Dodo H.W. (2003): Structure and organization of the genomic clone of a major peanut allergen gene, Ara h 1. Molecu-lar Immunology, 40: 565-571. Go to original source... Go to PubMed...
  57. Vivodík M., Balážová Ž., Gálová Z., Petrovičová L. (2019): Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated castor (Ricinus communis L.) genotypes. Genetika, 51: 137-146. Go to original source...
  58. White T.J., Bruns T.D., Lee S.B., Taylor J.W. (1990): Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. (eds.): PCR Protocols: A Guide to Methods and Applications. New York, Academic Press, 315-322. ISBN-10: 9780123721815 Go to original source...
  59. Williams D.E. (2022): Global Strategy for the Conservation and Use of Peanut Genetic Resources. Bonn, Global Crop Diversity Trust.
  60. Xiong F., Zhong R., Han Z., Jiang J., He L., Zhuang W., Tang R. (2011): Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Molecular Biology Reports, 38: 3487-3494. Go to original source... Go to PubMed...
  61. Žiarovská J., Urbanová L. (2022): Utilization of Bet v 1 homologs based amplified profile (BBAP) variability in allergenic plants fingerprinting. Biologia, 77: 517-523. Go to original source...
  62. Žiarovská J., Zeleňáková L. (2018): Application of genomic data for PCR Screening of BET v 1 conserved sequence in clinically relevant plant species. In: Vlachakis D. (ed.): Systems Biology., London, IntechOpen. Go to original source...
  63. Žiarovská J., Urbanová L., Cusimamani E.F., Ražná K., Labajová M. (2021): Variability in expression profiles of Betulaceae spring pollen allergens in Central Europe region. Biologia, 76: 2349-2358. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.