Plant Soil Environ., 2024, 70(7):407-417 | DOI: 10.17221/501/2023-PSE
Copper contamination in agricultural soils: A review of the effects of climate, soil properties, and prolonged copper pesticide application in vineyards and orchardsReview
- 1 Departamento de Recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica, Chile
- 2 Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
- 3 Instituto de Estadística, Universidad de Valparaíso, Valparaíso, Chile
- 4 INRAE, Avignon Université, UMR EMMAH, Avignon, France
- 5 Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
- 6 Department of Landscape Design and Sustainable Ecosystems, Peoples Friendship University of Russia, Moscow, Russian Federation
- 7 Department of Geology and Natural Resources, Institute of Geosciences, University of Campinas, Campinas, Brazil
Copper contamination stemming from copper-based pesticides poses a grave concern in vineyards and orchards, causing toxicity to soil organisms. Here, we present a comprehensive review of global data encompassing copper levels in these soils, coupled with variables such as the age of agricultural establishments, climate, soil organic matter content, soil pH, and farming practices (organic vs. conventional). The results suggest that there are three pivotal determinants driving copper content in vineyard and orchard soils: climate, the age of agricultural establishments, and soil organic matter content. It was impossible to estimate soil pH’s effect on soil copper content because of its dependence on precipitation. Copper content in vineyard and orchard soils worldwide follows a direct correlation with precipitation while inversely correlating with aridity (i.e. potential evapotranspiration divided by precipitation). Furthermore, a clear linkage emerges between farm age and increased copper content in soils globally. Intriguingly, the increased soil organic matter content has shown inverse impacts on soil copper levels. These effects of soil properties on soil copper contents were discussed in terms of copper losses from soil via surface runoff. However, no discernible disparities in soil copper content between organic and conventional farming systems were found. This worldwide survey not only underscores the established influence of climate on European vineyards but also sheds novel light on the historical legacy of copper contamination in these landscapes.
Keywords: toxic effect; organic agriculture; conventional agriculture; soil organic carbon; soil remediation
Received: December 23, 2023; Revised: May 22, 2024; Accepted: May 23, 2024; Prepublished online: June 26, 2024; Published: June 27, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Alva A.K., Graham J.H., Tucker D.P.H. (1993): Role of calcium in ameliorating copper phytotoxicity for citrus. Soil Science, 155: 211-218.
Go to original source...
- Alva A.K., Graham J.H., Anderson C.A. (1995): Soil pH and copper effects on young 'Hamlin' orange trees. Soil Science Society of America Jour-nal, 59: 481-487.
Go to original source...
- Alva A.K., Huang B., Paramasivam S. (2000): Soil pH affects copper fractionation and phytotoxicity. Soil Science Society of America Journal, 64: 955-962.
Go to original source...
- Ambrosini V.G., Rosa D.J., Prado J.P.C., Borghezan M., de Melo G.W.B., Soares C., Comin J.J., Simao D.G., Brunetto G. (2015): Reduction of copper phytotoxicity by liming: a study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiology and Biochemistry, 96: 270-280.
Go to original source...
Go to PubMed...
- Babcsányi I., Chabaux F., Granet M., Meite F., Payraudeau S., Duplay J., Imfeld G. (2016): Copper in soil fractions and runoff in a vineyard catch-ment: insights from copper stable isotopes. Science of the Total Environment, 557: 154-162.
Go to original source...
Go to PubMed...
- Babcsányi I., Imfeld G., Granet M., Chabaux F. (2014): Copper stable isotopes to trace copper behavior in wetland systems. Environmental Science and Technology, 48: 5520-5529.
Go to original source...
Go to PubMed...
- Ballabio C., Panagos P., Lugato E., Huang J.H., Orgiazzi A., Jones A., Fernández-Ugalde O., Borrelli P., Montanarella L. (2018): Copper distribution in European topsoils: an assessment based on LUCAS soil survey. Science of the Total Environment, 636: 282-298.
Go to original source...
Go to PubMed...
- Barker A.V. (2010): Science and Technology of Organic Farming. Boca Raton, CRC Press, 224. ISBN 978-1-4398-1612-7
- Belinda B., Peat J. (2014): Medical Statistics: A Guide to SPSS, Data Analysis, and Critical Appraisal. Hoboken, John Wiley and Sons, 392. ISBN: 978-1-118-58993-9
- Brunetto G., de Melo G.W.B., Terzano R., Del Buono D., Astolfi S., Tomasi N., Pii Y., Mimmo T., Cesco S. (2016): Copper accumulation in vine-yard soils: rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere, 162: 293-307.
Go to original source...
Go to PubMed...
- Brunetto G., Rosa D.J., Ambrosini V.G., Heinzen J., Ferreira P.A.A., Ceretta C.A., Soares C., Melo G.W.B., Soriani H.H., Nicoloso F.T., Farias J.G., De Conti L., Silva L.O.S., Santana N., Couto R.R., Jacques R.J.S., Tiecher T.L. (2019): Use of phosphorus fertilization and mycorrhization as strategies for reducing copper toxicity in young grapevines. Scientia Horticulturae, 248: 176-183.
Go to original source...
- Cesco S., Pii Y., Borruso L., Orzes G., Lugli P., Mazzetto F., Genova G., Signorini M., Brunetto G., Terzano R., Vigani G., Mimmo T. (2021): A smart and sustainable future for viticulture is rooted in soil: how to face Cu toxicity. Applied Sciences-Basel, 11: 907.
Go to original source...
- Coïc Y., Coppenet M. (1989): Les Oligo-éléments en Agriculture et Élevage: Incidence sur la Nutrition Humaine. Versailles, National Institute of Agricultural Research, 144.
- Dagostin S., Scharer H.J., Pertot I., Tamm L. (2011): Are there alternatives to copper for controlling grapevine downy mildew in organic viticul-ture? Crop Protection, 30: 776-788.
Go to original source...
- Dameron C., Howe P.D. (1998): Copper. Environmental Health Criteria, 200. Geneva, World Health Organization.
- Di Giacinto S., Friedel M., Poll C., Doring J., Kunz R., Kauer R. (2020): Vineyard management system affects soil microbiological properties. Oeno One, 54: 131-143.
Go to original source...
- Draper N.R., Smith H. (1998): Applied Regression Analysis. Wiley Series in Probability and Statistics. 3rd Edition. New Your, Wiley-Interscience. ISBN:9780471170822
Go to original source...
- Droogers P., Allen R.G. (2002): Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems, 16: 33-45.
Go to original source...
- Droz B., Payraudeau S., Martin J.A.R., Toth G., Panagos P., Montanarella L., Borrelli P., Imfeld G. (2021): Copper content and export in european vineyard soils influenced by climate and soil properties. Environmental Science and Technology, 55: 7327-7334.
Go to original source...
Go to PubMed...
- Duplay J., Semhi K., Errais E., Imfeld G., Babcsanyi I., Perrone T. (2014): Copper, zinc, lead and cadmium bioavailability and retention in vineyard soils (Rouffach, France): the impact of cultural practices. Geoderma, 230: 318-328.
Go to original source...
- DuPont S.T., Cox K., Johnson K., Peter K., Smith T., Munir M., Baro A. (2023): Evaluation of biopesticides for the control of Erwinia amylovora in apple and pear. Journal of Plant Pathology. (In Press)
Go to original source...
- Fan J.H., He Z.L., Ma L.N.Q., Stoffella P.J. (2011): Accumulation and availability of copper in citrus grove soils as affected by fungicide application. Journal of Soils and Sediments, 11: 639-648.
Go to original source...
- Figueroa L., Neaman A. (2023): Saline, yet acidic: a quirky soil combo in the Lluta valley in northern Chile. Idesia (Chile), 41: 133-137.
Go to original source...
- GEOROC (2021): Database, Geochemistry of Rocks of the Oceans and Continents. Mainz, Max Planck Institute for Chemistry. Available at: http://georoc.mpch-mainz.gwdg.de/georoc/
- Hardin J.W., Hilbe J.M. (2018): Generalized Linear Models and Extensions. 4th Edition. College Station, Stata Press. ISBN-10: 1-59718-225-7
- Hargreaves G.L., Hargreaves G.H., Riley J.P. (1985): Agricultural benefits for Senegal river basin. Journal of Irrigation and Drainage Engineering, 111: 113-124.
Go to original source...
- Hartmann J., Moosdorf N. (2012): The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geo-chemistry, Geophysics, Geosystems, 13: 4370.
Go to original source...
- Hendgen M., Doring J., Stohrer V., Schulze F., Lehnart R., Kauer R. (2020): Spatial differentiation of physical and chemical soil parameters under integrated, organic, and biodynamic viticulture. Plants-Basel, 9: 1361.
Go to original source...
Go to PubMed...
- Imfeld G., Meite F., Wiegert C., Guyot B., Masbou J., Payraudeau S. (2020): Do rainfall characteristics affect the export of copper, zinc and syn-thetic pesticides in surface runoff from headwater catchments? Science of the Total Environment, 741: 140437.
Go to original source...
Go to PubMed...
- Iñigo V., Marín A., Andrades M., Jiménez-Ballesta R. (2020): Evaluation of the copper and zinc contents of soils in the vineyards of La Rioja (Spain). Environments, 7: 55.
Go to original source...
- Johnson G.F. (1935): The early history of copper fungicides. Agricultural History, 9: 67-79.
- Komárek M., Cadkova E., Chrastny V., Bordas F., Bollinger J.C. (2010): Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environment International, 36: 138-151.
Go to original source...
Go to PubMed...
- Kreuzwieser J., Rennenberg H. (2014): Molecular and physiological responses of trees to waterlogging stress. Plant, Cell and Environment, 37: 2245-2259.
Go to original source...
Go to PubMed...
- Kutner M., Nachtsheim C., Neter J. (2004): Applied Linear Regression Models. Boston, McGraw-Hill Education, 701.
- Lamichhane J.R., Osdaghi E., Behlau F., Kohl J., Jones J.B., Aubertot J.N. (2018): Thirteen decades of antimicrobial copper compounds applied in agriculture. a review. Agronomy for Sustainable Development, 38: 28.
Go to original source...
- Lamsal K., Kim S., Jung J.H., Kim Y.S., Kim K.S., Lee Y.S. (2011): Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology, 39: 26-32.
Go to original source...
Go to PubMed...
- Marmolejo-Ramos F., Tian T.S. (2010): The shifting boxplot. A boxplot based on essential summary statistics around the mean. International Journal of Psychological Research, 3: 37-45.
Go to original source...
- Mehlhorn J., Besold J., Pacheco J.S.L., Gustafsson J.P., Kretzschmar R., Planer-Friedrich B. (2018): Copper mobilization and immobilization along an organic matter and redox gradient-insights from a Mofette site. Environmental Science and Technology, 52: 13698-13707.
Go to original source...
Go to PubMed...
- Mielke H.W. (2016): Nature and extent of metal-contaminated soils in urban environments (keynote talk). Environmental Geochemistry and Health, 38: 987-999.
Go to original source...
Go to PubMed...
- Ministério da Agricultura (2014): Instrução Normativa nº 17, de 18 de junho de 2014. Estabelece o regulamento técnico para os Sistemas Or-gânicos de Produção, bem como as listas de substâncias e práticas permitidas para uso nos Sistemas Orgânicos de Produção. Brasília, DF, Diário Oficial da União, Ministério da Agricultura, Pecuária e Abastecimento, 32 pp.
- Novoselov A.A., Hodson M.E., Tapia-Gatica J., Dovletyarova E.A., Yáñez C., Neaman A. (2022): The effect of rock lithology on the background concentrations of trace elements in alluvial soils: implications for environmental regulation. Applied Geochemistry, 146: 105440.
Go to original source...
- Ott W.R. (1990): A physical explanation of the lognormality of pollutant concentrations. Journal of the Air and Waste Management Association, 40: 1378-1383.
Go to original source...
Go to PubMed...
- Palleiro L., Rodriguez-Blanco M.L., Taboada-Castro M.M., Taboada-Castro M.T. (2012): Dissolved and particulate metals in the Mero River (NW Spain): factors affect-ing concentrations and load during runoffevents. Communications in Soil Science and Plant Analysis, 43: 88-94.
Go to original source...
- Perez-Rodriguez P., Soto-Gomez D., De La Calle I., Lopez-Periago J.E., Paradelo M. (2016): Rainfall-induced removal of copper-based spray residues from vines. Ecotoxicology and Environmental Safety, 132: 304-310.
Go to original source...
Go to PubMed...
- Pham N.T.H., Babcsányi I., Balling P., Farsang A. (2022): Accumulation patterns and health risk assessment of potentially toxic elements in the topsoil of two sloping vineyards (Tokaj-Hegyalja, Hungary). Journal of Soils and Sediments, 22: 2671-2689.
Go to original source...
- Porizka J., Divis P., Stursa V., Puncocharova L., Slavikova Z., Krikala J. (2021): Impact of organic and integrated pest management on the elemental composition of wine and grapes in a season with high fungal pressure. Journal of Elementology, 26: 871-891.
Go to original source...
- Probst B., Schuler C., Joergensen R.G. (2008): Vineyard soils under organic and conventional management - microbial biomass and activity indices and their relation to soil chemical properties. Biology and Fertility of Soils, 44: 443-450.
Go to original source...
- Ramos M.C., Quinton J.N., Tyrrel S.F. (2006): Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms. Journal of Environmental Management, 78: 97-101.
Go to original source...
Go to PubMed...
- Romeu-Moreno A., Mas A. (1999): Effects of copper exposure in tissue cultured Vitis vinifera. Journal of Agricultural and Food Chemistry, 47: 2519-2522.
Go to original source...
Go to PubMed...
- Romiæ M., Matijeviæ L., Bakiæ H., Romiæ D. (2014): Copper accumulation in vineyard soils: distribution, fractionation and bioavailability assess-ment. In: Hernández-Soriano M.C. (ed.): Environmental Risk Assessment of Soil Contamination. London, IntechOpen, 799-826. ISBN: 978-953-51-1235-8
Go to original source...
- SAG (2017): Resolución exenta No.: 6132/2017. Actualiza y consolida las medidas fitosanitarias para el control obligatorio de la plaga Pseudomo-nas syringae pv. Actinidiae (psa), y deroga resoluciones 2.151 y 2.152 de 2013 y sus modificaciones correspondientes. Santiago, Chile Servicio Agrícola y Ganadero, 12 pp.
- Salvatierra A., Toro G., Mateluna P., Opazo I., Ortiz M., Pimentel P. (2020): Keep calm and survive: adaptation strategies to energy crisis in fruit trees under root hypoxia. Plants-Basel, 9: 1108.
Go to original source...
Go to PubMed...
- Santa-Cruz J., Robinson B., Krutyakov Y.A., Shapoval O.A., Penaloza P., Yanez C., Neaman A. (2023): An assessment of the feasibility of phytoex-traction for the stripping of bioavailable metals from contaminated soils. Environmental Toxicology and Chemistry, 42: 558-565.
Go to original source...
Go to PubMed...
- Scheinberg I.H. (1979): Human health effects of copper. In: Nriagu J.O. (ed.): Copper in the Environment. Part II: Health Effects. New York, John Wiley and Sons, 17-31.
- Schoffer J.T., Antilen M., Neaman A., Diaz M.F., de la Fuente L.M., Urdiales C., Ginocchio R. (2021): The role of leaf litter as a protective barrier for copper-containing pesticides in orchard soils. Environmental Science and Pollution Research, 28: 60913-60922.
Go to original source...
Go to PubMed...
- Schoffer J.T., Aponte H., Neaman A., De la Fuente L.M., Arellano E.C., Gil P.M., Ginocchio R. (2022): Copper content in soils and litter from fruit orchards in Central Chile and its relationship with soil microbial activity. Plant, Soil and Environment, 68: 115-128.
Go to original source...
- Schoffer J.T., Sauvé S., Neaman A., Ginocchio R. (2020): Role of leaf litter on the incorporation of copper-containing pesticides into soils under fruit production: a review. Journal of Soil Science and Plant Nutrition, 20: 990-1000.
Go to original source...
- Schoffer J.T., Solari F., Petit-dit-Grézériat L., Pelosi C., Ginocchio R., Yáñez C., Mazuela P., Neaman A. (2024): The downside of copper pesticides: an earthworm's perspective. Environmental Science and Pollution Research, 31: 16085.
Go to original source...
Go to PubMed...
- Shi P., Schulin R. (2019): Effects of soil organic residue amendment on losses of dissolved organic carbon, P, Cu and Zn via surface runoff from arable soils. Soil and Tillage Research, 195: 104352.
Go to original source...
- Smorkalov I.A., Vorobeichik E.L., Dzeranov A.A., Pankratov D.A., Dovletyarova E.A., Yáñez C., Neaman A. (2023): Field experiment pitting magnetite nanoparticles against microparticles: effect of size in the rehabilitation of metalcontaminated soil. Revista Brasileira de Ciência do So-lo, 47: e0230017.
Go to original source...
- Sonoda K., Hashimoto Y., Wang S.L., Ban T. (2019): Copper and zinc in vineyard and orchard soils at millimeter vertical resolution. Science of the Total Environment, 689: 958-962.
Go to original source...
Go to PubMed...
- Steinmetz Z., Kenngott K.G.J., Azeroual M., Schafer R.B., Schaumann G.E. (2017): Fractionation of copper and uranium in organic and conven-tional vineyard soils and adjacent stream sediments studied by sequential extraction. Journal of Soils and Sediments, 17: 1092-1100.
Go to original source...
- Tapia-Gatica J., Selles I., Bravo M.A., Tessini C., Barros-Parada W., Novoselov A., Neaman A. (2022): Global issues in setting legal limits on soil metal contamination: a case study of Chile. Chemosphere, 290: 133404.
Go to original source...
Go to PubMed...
- Turnlund J.R., Keyes W.R., Kim S.K., Domek J.M. (2005): Long-term high copper intake: effects on copper absorption, retention, and homeostasis in men. The American Journal of Clinical Nutrition, 81: 822-828.
Go to original source...
Go to PubMed...
- US EPA (2002): Supplemental guidance for developing soil screening levels for superfund sites. Washington. U.S. Environmental Protection Agen-cy, 187. Available at: https://rais.ornl.gov/documents/SSG_nonrad_supplemental.pdf
- US EPA (2011): Exposure Factors Handbook. EPA/600/R-090/052F. Washington, DC, U.S. Environmental Protection Agency.
- Van Campen D.R. (1991): Trace elements in human nutrition. In: Mortvedt J.J., Cox F.R., Shuman L.M., Welch R.M. (eds.): Micronutrients in Agriculture. Soil Science Society of America, Madison, 663-701. ISBN-10: 9780891187974
Go to original source...
- Van Zwieten L., Rust J., Kingston T., Merrington G., Morris S. (2004): Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils. Science of the Total Environment, 329: 29-41.
Go to original source...
Go to PubMed...
- Wang Q.Y., Liu J.S., Wang Y., Yu H.W. (2015): Accumulations of copper in apple orchard soils: distribution and availability in soil aggregate frac-tions. Journal of Soils and Sediments, 15: 1075-1082.
Go to original source...
- Yamamoto K., Hashimoto Y., Kang J., Kobayashi K. (2018): Speciation of phosphorus zinc and copper in soil and water-dispersible colloid affected by a long-term application of swine manure compost. Environmental Science and Technology, 52: 13270-13278.
Go to original source...
Go to PubMed...
- Youlton C., Espejo P., Biggs J., Norambuena M., Cisternas M., Neaman A., Salgado E. (2010): Quantification and control of runoff and soil erosion on avocado orchards on ridges along steep-hillslopes. Ciencia e Investigación Agrária, 37: 113-123.
Go to original source...
- Young D.S. (2017): Handbook of Regression Methods. New York, Chapman and Hall. ISBN: 9781315154701
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.