Plant Soil Environ., 2025, 71(2):123-135 | DOI: 10.17221/449/2024-PSE

Identification of salt-tolerant cultivars and plant traits in wheat during germination and seedling emergence stagesOriginal Paper

Lin Zhao1, Simeng Li1, Xuemei He2, Hanyu Liu1, Yiran Cheng3, Yi Wang4, Houyang Kang4, Jian Zeng1
1 College of Resources, Sichuan Agricultural University, Wenjiang, Sichuan, P.R. China
2 Agricultural Technology Extension Center of Luojiang District, Luojiang, Sichuan, P.R. China
3 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Sichuan, P.R. China
4 Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, P.R. China

In this study, we assessed the salt tolerance of 38 wheat cultivars from primary wheat cultivation regions in China using a membership function value (MFV) during the germination and seedling emergence stages. Based on salt tolerance assessment, three contrasting groups were classified, with 10 tolerant, 23 moderately tolerant and 5 sensitive cultivars under low salt stress, and 4 tolerant, 25 moderately tolerant and 9 sensitive cultivars under high salt stress and in addition to Na+ and K+ homeostasis regulation, nitrogen efficient transfer from seed to plant tissues denoted the significant positive correlation with salt tolerance, confirming the importance of nutrient spectra organisation. Salt-tolerant and moderately tolerant cultivars had lower trait network modularity than salt-sensitive cultivars, demonstrating that wheat with different salt tolerance uses alternative strategies to cope with salt stress. These results were important for germplasm evaluation and variety breeding of salt tolerance in wheat.

Keywords: salinity; Triticum aestivum L.; germination capacity; seedling growth; network analysis

Received: August 17, 2024; Revised: December 19, 2024; Accepted: December 19, 2024; Prepublished online: January 28, 2025; Published: February 24, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zhao L, Li S, He X, Liu H, Cheng Y, Wang Y, et al.. Identification of salt-tolerant cultivars and plant traits in wheat during germination and seedling emergence stages. Plant Soil Environ. 2025;71(2):123-135. doi: 10.17221/449/2024-PSE.
Download citation

References

  1. Alon U. (2003): Biological networks: the tinkerer as an engineer. Science, 301: 1866-1867. Go to original source... Go to PubMed...
  2. Ashraf M., Akram N.A. (2009): Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnology Advances, 27: 744-752. Go to original source... Go to PubMed...
  3. Bazihizina N., Colmer T.D., Cuin T.A., Mancuso S., Shabala S. (2019): Friend or foe? Chloride patterning in halophytes. Trends in Plant Science, 24: 142-151. Go to original source... Go to PubMed...
  4. Chakraborty K., Chattaopadhyay K., Nayak L., Ray S., Yeasmin L., Jena P., Gupta S., Mohanty S.K., Swain P., Sarkar R.K. (2019): Ionic selectivity and coordinated transport of Na+ and K+ in flag leaves render differential salt tolerance in rice at the reproductive stage. Planta, 250: 1637-1653. Go to original source... Go to PubMed...
  5. Chen X., Min D., Yasir T.A., Hu Y. (2012): Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Research, 137: 195-201. Go to original source...
  6. Choudhary A., Kaur N., Sharma A., Kumar A. (2021): Evaluation and screening of elite wheat germplasm for salinity stress at the seedling phase. Physiologia Plantarum, 173: 2207-2215. Go to original source... Go to PubMed...
  7. Davenport R.J., Reid R.J., Smith F.A. (1997): Sodium-calcium interactions in two wheat species differing in salinity tolerance. Physiologia Plantarum, 99: 323-327. Go to original source...
  8. Deinlein U., Stepha A.B., Horie T., Luo W., Xu G., Schroeder J.I. (2014): Plant salt-tolerance mechanisms. Trends in Plant Science, 19: 371-379. Go to original source... Go to PubMed...
  9. Dinneny J.R. (2019): Developmental responses to water and salinity in root systems. Annual Review of Cell and Developmental Biology, 35: 239-257. Go to original source... Go to PubMed...
  10. FAO (2021): Faostat. Available at: http://www.fao.org/faost at/en/#data/QC/visualize
  11. Flowers T. (2004): Improving crop salt tolerance. Journal of Experimental Botany, 55: 307-319. Go to original source... Go to PubMed...
  12. Flores-Moreno H., Fazayeli F., Banerjee A., Datta A., Kattge J., Butler E.E., Atkin O.A., Wythers K., Chen M., Anand M., Bahn M., Byun C., Cornelissen J.H.C., Craine J., Gonzalez-Melo A., Hattingh W.N., Jansen S., Kraft N.J.B., Kramer K., Laughlin D.C., Minden V., Niinemets Ü., Onipchenko V., Peñuelas J., Soudzilovskaia N.A., Dalrymple R.L., Reich P.B. (2019): Robustness of trait connections across environ-mental gradients and growth forms. Global Ecology and Biogeography, 28: 1806-1826. Go to original source...
  13. Lauchli A., Luttge U. (2002): Salinity and Nitrogen Nutrition. Boston, Boston Kluwer Academic Publishers, 229-248.
  14. Genc Y., McDonald G.K., Tester M. (2007): Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant, Cell and Environment, 30: 1486-1498. Go to original source... Go to PubMed...
  15. Huang J., Koganti T., Santos F.A., Triantafilis J. (2017): Mapping soil salinity and a fresh-water intrusion in three-dimensions using a quasi-3d joint-inversion of DUALEM-421S and EM34 data. Science of the Total Environment, 577: 395-404. Go to original source... Go to PubMed...
  16. Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J. (2000): Plant cellular and molecular responses to high salinity. Annual Review in Plant Biology, 51: 463-499. Go to original source... Go to PubMed...
  17. Julkowska M.M., Koevoets I.T., Mol S., Hoefsloot H., Feron R., Tester M.A., Keurentjes J.J.B., Korte A., Haring M.A., de Boer G., Testerink C. (2017): Genetic components of root architecture remodeling in response to salt stress. Plant Cell, 29: 3198-3213. Go to original source... Go to PubMed...
  18. Kleyer M., Trinogga J., Cebrianpiqueras M.A., Trenkamp A., Fløjgaard C., Ejrnaes R., Bouma T.J., Minden V., Maier M., Mantilla-Contreras J., Albach D.C., Blasius B. (2019): Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants. Journal of Ecology, 107: 829-842. Go to original source...
  19. Li W., Zhang H., Zeng Y., Xiang L., Lei Z., Huang Q., Li T., Shen F., Cheng Q. (2020): A salt tolerance evaluation method for sunflower (Heli-anthus annuus L.) at the seed germination stage. Scientific Reports, 10: 1-9. Go to original source... Go to PubMed...
  20. Mohanty A., Chakraborty K., Mondal S., Jena P., Panda R.J., Samal K.C., Chattopadhyay K. (2023): Relative contribution of ion exclusion and tissue tolerance traits govern the differential response of rice towards salt stress at seedling and reproductive stages. Environmental and Experimental Botany, 206: 105131. Go to original source...
  21. Mérai Z., Graeber K., Wilhelmsson P., Ullrich K.K., Arshad W., Grosche C., Tarkowská D., Turečková V., Strnad M., Rensing S.A., Leubner-Metzger G., Scheid O.M. (2018): Aethionema arabicum: a novel model plant to study the light control of seed germination. Journal of Experimental Botany, 70: 3313-3328. Go to original source... Go to PubMed...
  22. Munns R., James R.A., Läuchli A. (2006): Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57: 1025-1043. Go to original source... Go to PubMed...
  23. Munns R., Tester M. (2008): Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681. Go to original source... Go to PubMed...
  24. Paul A., Mondal S., Pal A., Biswas S., Chakraborty K., Mazumder A., Biswas A.K., Kundu R. (2023): Seed priming with NaCl helps to improve tissue tolerance, potassium retention ability of plants, and protects the photosynthetic ability in two different legumes, chickpea and lentil, under salt stress. Planta, 257: 111. Go to original source... Go to PubMed...
  25. Pitman M.G. (1984): Transport across the root and shoot/root interactions. In: Davy A.J. (ed.): Salinity Tolerance in Plant: Strategies for Crop Improvement. New York, Wiley Press, 93-123.
  26. Qadir M., Quillérou E., Nangia V., Murtaza G., Singh M., Thomas R.J., Drechsel P., Noble A.D. (2014): Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38: 282-295. Go to original source...
  27. Song J., Feng G., Tian C., Zhang F. (2005): Strategies for adaption of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed germination stage. Annual of Botany, 96: 399-405. Go to original source... Go to PubMed...
  28. Rajabi D.A., Zahedi M., Ludwiczak A., Cardenas P.S., Piernik A. (2020): Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10: 859. Go to original source...
  29. Reich P.B. (2014): The worldwide 'fast-slow' plant economics spectrum: a traits manifesto. Journal of Ecology, 102: 275-301. Go to original source...
  30. Shabala S., Bose J., Hedrich R. (2014): Salt bladders: do they matter? Trends in Plant Science, 19: 687-691. Go to original source... Go to PubMed...
  31. Shabala S., Cuin T.A. (2008): Potassium transport and plant salt tolerance. Physiolgia Plantarum, 133: 651-669. Go to original source... Go to PubMed...
  32. Tester M., Davenport R. (2003): Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91: 503-527. Go to original source... Go to PubMed...
  33. Wang M., Xia G. (2018): The landscape of molecular mechanisms for salt tolerance in wheat. The Crop Journal, 6: 42-47. Go to original source...
  34. Wu H.H., Zhang X.C., Giraldo J.P., Shabala S. (2018): It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil, 431: 1-17. Go to original source...
  35. Yang Y., Guo Y. (2018): Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology, 60: 796-804. Go to original source... Go to PubMed...
  36. Zhao C., Zhang H., Song C., Zhu J.K., Shabala S. (2020): Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1: 100017. Go to original source... Go to PubMed...
  37. Zhao Z., Zheng H., Wang M., Guo Y., Wang Y., Zheng C., Tao Y., Sun X., Qian D., Cao G., Zhu M., Liang M., Wang M., Gong Y., Li B., Wang J., Sun Y. (2023): Reshifting Na+ from shoots into long roots is associated with salt tolerance in two contrasting inbred maize (Zea mays L.) lines. Plants, 12: 1952. Go to original source... Go to PubMed...
  38. Zhou H., Shi H., Yang Y., Feng X., Chen X., Xiao F., Lin H., Guo Y. (2024): Insights into plant salt stress signalling and tolerance. Journal of Genetics and Genomics, 51: 16-34. Go to original source... Go to PubMed...
  39. Zhu J.K. (2002): Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53: 247-273. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.