Plant Soil Environ., 2025, 71(4):249-258 | DOI: 10.17221/8/2025-PSE

Effects of silicon on the transport, subcellular distribution, and chemical forms of lead in Salix viminalis L.Original Paper

Feifei Zhai1, Menglong Yin1, Jinmei Mao2, Junxiang Liu3, Haidong Li1, Yunxing Zhang1, Shaowei Zhang4, Zhenyuan Sun3
1 School of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, P.R. China
2 Research Institute of Economic Forest, Xinjiang Academy of Forestry, Urumqi, P.R. China
3 State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry; Key Laboratory of Tree Breeding and Cultivation State Forestry Administration, Beijing, P.R. China
4 College of Agriculture and Medicine, Henan Open University, Zhengzhou, P.R. China

Lead (Pb) is a harmful heavy metal that threatens ecosystems and plant growth. Silicon (Si) plays a crucial role in plant responses to heavy metal stress. In this study, the effects of Si on Pb2+ content and transport, subcellular distribution, and chemical forms in Salix viminalis L. under Pb stress were analysed, aiming to elucidate the detoxification mechanism of Si in S. viminalis under such conditions. Results showed that Si reduced Pb2+ in aboveground parts and increased it in roots, lowering its movement to leaves and stems. Analysis of the subcellular distribution of Pb2+ revealed that Si application promoted the transfer of Pb2+ to vacuole-dominated soluble components (F4) and cell wall components (F1), which increased the binding capacity of the cell wall and the vacuolar storage compartmentalisation for Pb2+. Changes in the chemical forms of Pb2+ indicated that Si significantly decreased the proportion of more mobile, ethanol-extractable Pb2+ (FE) and deionised water-extractable Pb2+ (FW) while increasing the proportion of less mobile Pb2+ forms, such as NaCl-extractable (FNaCl), HCl-extractable (FHCl), and acetic acid-extractable (FHAc) Pb2+, thereby reducing its mobility. This study provides empirical support for the application of Si in the phytoremediation of heavy metal-contaminated soils.

Keywords: heavy metal; toxic element; toxicity; accumulation; detoxification

Received: January 6, 2025; Revised: March 27, 2025; Accepted: March 27, 2025; Prepublished online: April 7, 2025; Published: April 30, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zhai F, Yin M, Mao J, Liu J, Li H, Zhang Y, et al.. Effects of silicon on the transport, subcellular distribution, and chemical forms of lead in Salix viminalis L. Plant Soil Environ. 2025;71(4):249-258. doi: 10.17221/8/2025-PSE.
Download citation

References

  1. Ashfaque F., Inam A., Iqbal S., Sahay S. (2017): Response of silicon on metal accumulation, photosynthetic inhibition and oxidative stress in chromium-induced mustard (Brassica juncea L.). South African Journal of Botany, 111: 153-160. Go to original source...
  2. Bhat J.A., Shivaraj S.M., Singh P., Navadagi D.B., Tripathi D.K., Dash P.K., Solanke A.U., Sonah H., Deshmukh R. (2019): Role of silicon in mitigation of heavy metal stresses in crop plants. Plants, 8: 71. Go to original source... Go to PubMed...
  3. Cai Y., Pan B., Liu B., Cai K., Tian J., Wang W. (2022): The Cd sequestration effects of rice roots affected by different Si management in Cd-contaminated paddy soil. Science of The Total Environment, 849: 157718. Go to original source... Go to PubMed...
  4. Dalvi A.A., Bhalerao S.A. (2013): Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Annals of Plant Science, 2: 362-368.
  5. Etesami H., Jeong B.R. (2018): Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 147: 881-896. Go to original source... Go to PubMed...
  6. Fu X., Dou C., Chen Y., Chen X., Shi J., Yu M., Xu J. (2011): Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. Journal of Hazardous Materials, 186: 103-107. Go to original source... Go to PubMed...
  7. Głazowska S., Baldwin L., Mravec J., Bukh C., Hansen T.H., Jensen M.M., Fangel J.U., Willats W.G.T., Glasius M., Felby C., Schjoerring J.K. (2018): The impact of silicon on cell wall composition and enzymatic saccharification of Brachypodium distachyon. Biotechnology for Biofuels, 11: 1-18. Go to original source... Go to PubMed...
  8. Guo J., Ye D., Zhang X., Huang H., Wang Y., Zheng Z., Li T., Yu H. (2022): Characterization of cadmium accumulation in the cell walls of leaves in a low-cadmium rice line and strengthening by foliar silicon application. Chemosphere, 287: 132374. Go to original source... Go to PubMed...
  9. Guo L., Chen A., He N., Yang D., Liu M. (2018): Exogenous silicon alleviates cadmium toxicity in rice seedlings about Cd distribution and ultrastructure changes. Journal of Soils and Sediments, 18: 1691-1700. Go to original source...
  10. Guo Y., Chen K., Lei S., Gao Y., Yan S., Yuan M. (2023): Rare earth elements (REEs) adsorption and detoxification mechanisms in cell wall polysaccharides of Phytolacca americana L. Plants, 12: 1981. Go to original source... Go to PubMed...
  11. Gzyl J., Przymusiński R., Gwóźdź E.A. (2009): Ultrastructure analysis of cadmium-tolerant and -sensitive cell lines of cucumber (Cucumis sativus L.). Plant Cell, Tissue and Organ Culture (PCTOC), 99: 227-232. Go to original source...
  12. Huang H., Chen H.P., Kopittke P.M., Kretzschmar R., Zhao F.J., Wang P. (2021): The voltaic effect as a novel mechanism controlling the remobilisation of cadmium in paddy soils during drainage. Environmental Science and Technology, 55: 1750-1758. Go to original source... Go to PubMed...
  13. Huang R.Z., Jiang Y.B., Jia C.H., Jiang S.M., Yan X.P. (2018): Subcellular distribution and chemical forms of cadmium in Morus alba L. International Journal of Phytoremediation, 20: 448-453. Go to original source... Go to PubMed...
  14. Islam E., Liu D., Li T., Yang X., Jin X., Khan M., Mahmood Q., Hayat Y., Imtiaz M. (2011): Effect of Pb toxicity on the growth and physiology of two ecotypes of Elsholtzia argyi and its alleviation by Zn. Environmental Toxicology, 26: 403-416. Go to original source... Go to PubMed...
  15. Kaur G., Singh H.P., Batish D.R., Kohli R.K. (2013): Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma, 250: 53-62. Go to original source... Go to PubMed...
  16. Keller C., Rizwan M., Davidian J.C., Pokrovsky O.S., Bovet N., Chaurand P., Meunier J.D. (2015): Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta, 241: 847-860. Go to original source... Go to PubMed...
  17. Khlifi N., Ghabriche R., Ayachi I., Zorrig W., Ghnaya T. (2024): How does silicon alleviate Cd-induced phytotoxicity in barley, Hordeum vulgare L.? Chemosphere, 362: 142739. Go to original source... Go to PubMed...
  18. Khan I., Awan S.A., Rizwan M., Ali S., Hassan M.J., Brestic M., Zhang X., Huang L. (2021): Effects of silicon on heavy metal uptake at the soil-plant interphase: a review. Ecotoxicology and Environmental Safety, 222: 112510. Go to original source... Go to PubMed...
  19. Kollárová K., Kusá Z., Vatehová-Vivodová Z., Lišková D. (2019): The response of maize protoplasts to cadmium stress mitigated by silicon. Ecotoxicology and Environmental Safety, 170: 488-494. Go to original source... Go to PubMed...
  20. Konarska A. (2008): Changes in the ultrastructure of Capsicum annuum L. seedlings' roots under aluminium stress conditions. Acta Agrobotanica, 61: 83671028. Go to original source...
  21. Kopittke P.M., Gianoncelli A., Kourousias G., Green K., McKenna B.A. (2017): Alleviation of Al toxicity by Si is associated with the formation of Al-Si complexes in root tissues of sorghum. Frontiers in Plant Science, 8: 2189. Go to original source... Go to PubMed...
  22. Krämer U. (2000): Cadmium for all meals - plants with an unusual appetite. The New Phytologist, 145: 1-5. Go to original source...
  23. Liu J., Cai H., Mei C., Wang M. (2015): Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Frontiers of Environmental Science and Engineering, 9: 905-911. Go to original source...
  24. Lu H., Li Z., Wu J., Shen Y., Li Y., Zou B., Tang Y., Zhuang P. (2017): Influences of calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L. Scientific Reports, 7: 40583. Go to original source... Go to PubMed...
  25. Lv Q.Y., Han M.L., Gao Y.Q., Zhang C.Y., Wang Y.L., Chao Z.F., Zhong L.Y., Chao D.Y. (2022): Sec24C mediates a Golgi-independent trafficking pathway that is required for tonoplast localisation of ABCC1 and ABCC2. New Phytologist, 235: 1486-1500. Go to original source... Go to PubMed...
  26. Mirecki N., Agic R., Sunic L., Milenkovic L., Ilic Z.S. (2015): Transfer factor as indicator of heavy metals content in plants. Fresenius Environmental Bulletin, 24: 4212-4219.
  27. Mleczek M., Rutkowski P., Rissmann I., Kaczmarek Z., Golinski P., Szentner K., Strażyńska K., Stachowiak A. (2010): Biomass productivity and phytoremediation potential of Salix alba and S. viminalis. Biomass and Bioenergy, 34: 1410-1418. Go to original source...
  28. Pan B., Cai Y., Cai K., Tian J., Wang W. (2024): Optimized silicon fertilization regime weakens cadmium translocation and increases its biotransformation in rice tissues. The Crop Journal, 12: 1041-1053. Go to original source...
  29. Pan G., Yan W., Zhang H., Xiao Z., Li X., Liu W., Zheng L. (2019): Subcellular distribution and chemical forms involved in manganese accumulation and detoxification for Xanthium strumarium L. Chemosphere, 237: 124531. Go to original source... Go to PubMed...
  30. Pang Z., Peng H., Lin S., Liang Y. (2024): Theory and application of a Si-based defense barrier for plants: implications for soil-plant-atmosphere system health. Critical Reviews in Environmental Science and Technology, 54: 722-746. Go to original source...
  31. Pereira T.S., Pereira T.S., Souza C.L.F.D.C., Lima E.J.A., Batista B.L., Lobato A.K.D.S. (2018): Silicon deposition in roots minimizes the cadmium accumulation and oxidative stress in leaves of cowpea plants. Physiology and Molecular Biology of Plants, 24: 99-114. Go to original source... Go to PubMed...
  32. Pontigo S., Godoy K., Jiménez H., Gutiérrez-Moraga A., Mora M.D.L.L., Cartes P. (2017): Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si uptake and antioxidant performance in ryegrass plants. Frontiers in Plant Science, 8: 642. Go to original source... Go to PubMed...
  33. Qiu L.X., Guan D.X., Liu Y.W., Teng H.H., Li Z.B., Lux A., Kuzyakov Y., Ma L.Q. (2024): Mechanisms of arbuscular mycorrhizal fungi increasing silicon uptake by rice. Journal of Agricultural and Food Chemistry, 72: 16603-16613. Go to original source... Go to PubMed...
  34. Raj K., Das A.P. (2023): Lead pollution: impact on environment and human health and approach for a sustainable solution. Environmental Chemistry and Ecotoxicology, 5: 79-85. Go to original source...
  35. Rhimi N., Hajji M., Elkhouni A., Ksiaa M., Rabhi M., Lefi E., Smaoui A., Hessini K., Hamzaoui A.H., Cabassa-Hourton C., Savouré A., Debez A., Zorrig W., Abdelly C. (2024): Silicon reduces cadmium accumulation and improves growth and stomatal traits in sea barley (Hordeum marinum Huds.) exposed to cadmium stress. Journal of Soil Science and Plant Nutrition, 24: 2232-2248. Go to original source...
  36. Su H., Zou T., Lin R., Zheng J., Jian S., Zhang M. (2020): Characterization of a phytochelatin synthase gene from Ipomoea pes-caprae involved in cadmium tolerance and accumulation in yeast and plants. Plant Physiology and Biochemistry, 155: 743-755. Go to original source... Go to PubMed...
  37. Sun J., Luo L. (2018): Subcellular distribution and chemical forms of Pb in corn: strategies underlying tolerance in Pb stress. Journal of Agricultural and Food Chemistry, 66: 6675-6682. Go to original source... Go to PubMed...
  38. Utrillas M.J., Alegre L. (1997): Impact of water stress on leaf anatomy and ultrastructure in Cynodon dactylon (L.) Pers. under natural conditions. International Journal of Plant Sciences, 158: 313-324. Go to original source...
  39. Vaculík M., Landberg T., Greger M., Luxová M., Stoláriková M., Lux A. (2012): Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Annals of Botany, 110: 433-443. Go to original source... Go to PubMed...
  40. Vaculík M., Lukačová Z., Bokor B., Martinka M., Tripathi D.K., Lux A. (2020): Alleviation mechanisms of metal(loid) stress in plants by silicon: a review. Journal of Experimental Botany, 71: 6744-6757. Go to original source... Go to PubMed...
  41. Wei W., Peng H., Xie Y., Wang X., Huang R., Chen H., Ji X. (2021): The role of silicon in cadmium alleviation by rice root cell wall retention and vacuole compartmentalization under different durations of Cd exposure. Ecotoxicology and Environmental Safety, 226: 112810. Go to original source... Go to PubMed...
  42. Wu F.B., Dong J., Qian Q.Q., Zhang G.P. (2005): Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere, 60: 1437-1446. Go to original source... Go to PubMed...
  43. Wu J., Guo J., Hu Y., Gong H. (2015): Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Frontiers in Plant Science, 6: 453. Go to original source... Go to PubMed...
  44. Xiao Z., Liang Y. (2022): Silicon prevents aluminum from entering root tip by promoting formation of root border cells in rice. Plant Physiology and Biochemistry, 175: 12-22. Go to original source... Go to PubMed...
  45. Xiao Z.X., Peng M., Mei Y.C., Li T., Liang Y.C. (2021): Effect of organosilicone and mineral silicon fertilizers on chemical forms of cadmium and lead in soil and their accumulation in rice. Environmental Pollution, 283: 117107. Go to original source... Go to PubMed...
  46. Xin J.P., Zhang Y., Tian R.N. (2018): Tolerance mechanism of Triarrhena sacchariflora (Maxim.) Nakai. seedlings to lead and cadmium: translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure. Ecotoxicology and Environmental Safety, 165: 611-621. Go to original source... Go to PubMed...
  47. Yang L.P., Zhu J., Wang P., Zeng J., Tan R., Yang Y.Z., Liu Z.M. (2018): Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicology and Environmental Safety, 160: 10-18. Go to original source... Go to PubMed...
  48. Zajaczkowska A., Korzeniowska J., Sienkiewicz-Cholewa U. (2020): Effect of soil and foliar silicon application on the reduction of zinc toxicity in wheat. Agriculture, 10: 522. Go to original source...
  49. Zhao K.Q., Yang Y., Peng H., Zhang L.H., Zhou Y.Y., Zhang J.C., Du C.Y., Liu J.W., Lin X., Wang N.Y., Huang H.L., Luo L. (2022): Silicon fertilizers, humic acid and their impact on physicochemical properties, availability and distribution of heavy metals in soil and soil aggregates. Science of the Total Environment, 822: 153483. Go to original source... Go to PubMed...
  50. Zhao Y., Wu J., Shang D., Ning J., Zhai Y., Sheng X., Ding H. (2015): Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis. Food Chemistry, 168: 48-54. Go to original source... Go to PubMed...
  51. Zheng J., Chen Q., Xu J., Wen L., Li F., Zhang L. (2019): Effect of degree of silicification on silica/silicic acid binding Cd (II) and its mechanism. The Journal of Physical Chemistry A, 123: 3718-3727. Go to original source... Go to PubMed...
  52. Zulfiqar U., Farooq M., Hussain S., Maqsood M., Hussain M., Ishfaq M., Ahmad M., Anjum M.Z. (2019): Lead toxicity in plants: impacts and remediation. Journal of Environmental Management, 250: 109557. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.