Plant Soil Environ., 2025, 71(6):441-452 | DOI: 10.17221/663/2024-PSE

Gamma-aminobutyric acid improves cold tolerance of wheat seedlingsShort Communication

Changjuan Shan1,2, Zhimin Yuan1
1 Henan Institute of Science and Technology, Xinxiang, P.R. China
2 Xinxiang Pasture Engineering Technology Research Center, Xinxiang, P.R. China

To provide a new agent to enhance wheat cold tolerance, we investigated the impacts of gamma-aminobutyric acid (GABA) on wheat antioxidant and photosynthetic capacity and growth parameters under cold stress (CS). CS significantly improved superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and gluathione reductase in wheat leaves. Meanwhile, CS also increased the contents of reduced ascorbate (AsA) and reduced glutathione (GSH). However, CS significantly increased electrolyte leakage (EL) and malondialdehyde (MDA) levels. Compared with CS, GABA + CS improved the activities of the above antioxidant enzymes and the contents of antioxidants. In this way, GABA improved wheat antioxidant capacity and decreased MDA content and EL under CS. Whereas CS significantly increased non-photochemical quenching coefficient (qN) and reduced soil and plant analyser development (SPAD) value, net photosynthetic rate (Pn), maximum photochemical efficiency of PSII (Fv/Fm), effective quantum yield of PS II (Y(II)), photochemical quenching coefficient (qP), plant height and biomass. Compared to CS, GABA + CS significantly promoted the photosynthetic capacity by reducing qN and increasing SPAD value, Pn, Fv/Fm, Y(II) and qP. In this way, GABA improved plant growth under CS. Our results indicated that GABA can be used as a new agent to improve wheat cold tolerance.

Keywords: cold damage; chlorophyll fluorescence parameters; osmoregulation; photosynthetic pigments; reactive oxygen species

Received: December 18, 2024; Revised: May 10, 2025; Accepted: May 19, 2025; Prepublished online: June 5, 2025; Published: June 25, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Shan C, Yuan Z. Gamma-aminobutyric acid improves cold tolerance of wheat seedlings. Plant Soil Environ. 2025;71(6):441-452. doi: 10.17221/663/2024-PSE.
Download citation

References

  1. Akbarzadeh S., Morshedloo M.R., Behtash F., Mumivand H., Maggi F. (2023): Exogenous γ-aminobutyric acid (BABA) improves the growth, essential oil content, and composition of grapefruit mint (Mentha suaveolens × piperita) under water deficit stress conditions. Horticulturae, 9: 354. Go to original source...
  2. Aljuaid B.S., Ashour H. (2022): Exogenous γ-aminobutyric acid (GABA) application mitigates salinity stress in maize plants. Life, 12: 1860. Go to original source... Go to PubMed...
  3. Ali S., Anjum M.A., Nawaz A., Ejaz S., Anwar R., Khaliq G., Hussain S., Ullah S., Hussain R., Saleem M.S., Hasan M.U. (2022): Postharvest γ-aminobutyric acid application mitigates chilling injury of aonla (Emblica officinalis Gaertn.) fruit during low temperature storage. Postharvest Biology and Technology, 185: 111803. Go to original source...
  4. AL-Quraan N.A., Sartawe F.A., Qaryouti M.M. (2013): Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triti-cum aestivum L.) seedlings under salt and osmotic stress. Journal of Plant Physiology, 170: 1003-1009. Go to original source... Go to PubMed...
  5. Badr A., Basuoni M.M., Ibrahim M., Salama Y.E., Abd-Ellatif S., Abdel Razek E.S., Amer K.E., Ibrahim A.A., Zayed E.M. (2024): Ameliorative impacts of gamma-aminobutyric acid (GABA) on seedling growth, physiological biomarkers, and gene expression in eight wheat (Triticum aes-tivum L.) cultivars under salt stress. BMC Plant Biology, 24: 605. Go to original source... Go to PubMed...
  6. Coppa E., Quagliata G., Palombieri S., Iavarone C., Sestili F., Del Buono D., Astolfi S. (2024): Biogenic ZnO nanoparticles effectively alleviate cadmium-induced stress in durum wheat (Triticum durum Desf.) plants. Environments, 11: 285. Go to original source...
  7. Dong Z., Huang J., Qi T., Meng A., Fu Q., Fu Y., Xu F. (2024): Exogenous γ-aminobutyric acid can improve seed germination and seedling growth of two cotton cultivars under salt stress. Plants, 13: 82. Go to original source... Go to PubMed...
  8. Fang H., Huang J., Zhu X., Hassan M.A., Ren J., Huang J., Zheng B., Chen X., Lin F., Li J. (2024): Postponed application of phosphorus and potassi-um fertilizers mitigates the damage of late spring coldness by improving winter wheat root physiology. Plants, 13: 2311. Go to original source... Go to PubMed...
  9. Griffith O.W. (1980): Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochem-istry, 106: 207-212. Go to original source... Go to PubMed...
  10. Hao X.H., Liu K.X., Zhang M.Y. (2024): Effect of exogenous γ-aminobutyric acid on physiological property, antioxidant activity, and cadmium uptake of quinoa seedlings under cadmium stress. Bioscience Reports, 44: BSR20240215. Go to original source...
  11. Hmmam I., Ali A.E.M., Saleh S.M., Khedr N., Abdellatif A. (2022): The role of salicylic acid in mitigating the adverse effects of chilling stress on "Seddik" mango transplants. Agronomy, 12: 1369. Go to original source...
  12. Hodges D.M., Andrews C.J., Johnson D.A., Hamilton R.I. (1996): Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiologia Plantarum, 98: 685-692. Go to original source...
  13. Hodges M.D., DeLong J.M., Forney C.F., Prange R.K. (1999): Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207: 604-611. Go to original source...
  14. Jia Y., Zou D., Wang J., Sha H.J., Liu H.L., Inayat M.A., Sun J., Zheng H.L., Xia N., Zhao H.W. (2017): Effects of γ-aminobutyric acid, glutamic acid, and calcium chloride on rice (Oryza sativa L.) under cold stress during the early vegetative stage. Journal of Plant Growth Regulation, 36: 240-253. Go to original source...
  15. Katerova Z., Todorova D., Vaseva I.I., Shopova E., Petrakova M., Iliev M., Sergiev I. (2024): Effects of melatonin pre- and post-drought treatment on oxidative stress markers and expression of proline-related transcripts in young wheat plants. International Journal of Molecular Sciences, 25: 12127. Go to original source... Go to PubMed...
  16. Kołodziejczyk I., Kázmierczak A., Posmyk M.M. (2021): Melatonin application modifies antioxidant defense and induces endoreplication in maize seeds exposed to chilling stress. International Journal of Molecular Sciences, 22: 8628. Go to original source... Go to PubMed...
  17. Kolupaev Y.E., Shakhov I.V., Kokorev A.I., Dyachenko A.I., Dmitriev A.P. (2024): The role of reactive oxygen species and calcium ions in imple-menting the stress-protective effect of γ-aminobutyric acid on wheat seedlings under heat stress conditions. Cytology and Genetics, 58: 81-91. Go to original source...
  18. Kumari S., Kaur P., Mahajan M., Nayak S.R., Khanna R.R., Rehman M.T., AlAjmi M.F., Khan M.I.R. (2025): γ-aminobutyric acid (GABA) supple-mentation modulates phosphorus retention, production of carbon metabolites and defense metabolism under arsenic toxicity in wheat. Plant Science, 356: 112504. Go to original source... Go to PubMed...
  19. Kumari S., Nazir F., Singh A., Haroon H., Khan N.R., Sahoo R.N., Albaqami M., Siddique K.H.M., Khan M.I.R. (2024): γ-aminobutyric acid (GABA) strengthened nutrient accumulation, defense metabolism, growth and yield traits against salt and endoplasmic reticulum stress condi-tions in wheat plants. Plant and Soil, 498: 409-429. Go to original source...
  20. Li J., Bai X., Ran F., Zhi Y., Gao D., Fang Y., Cheng J., Chai X., Li P., Chen H. (2024): Response mechanisms of Annual bluegrass (Poa annua) to cold, drought, combined stresses and recovery in morphology, photosynthesis, physiology and microstructure. Plant Physiology and Biochemis-try, 217: 109238. Go to original source... Go to PubMed...
  21. Li Y., Fan Y., Ma Y., Zhang Z., Yue H., Wang L., Li J., Jiao Y. (2017): Effects of exogenous γ-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L.) seedlings under low light stress. Journal of Plant Growth Regulation, 36: 436-449. Go to original source...
  22. Li Z., Zhou M., Zeng W., Zhang Y., Liu L., Liu W., Peng Y. (2024): Root metabolites remodeling regulated by γ-aminobutyric acid (GABA) im-proves adaptability to high temperature in creeping bentgrass. Plant and Soil, 500: 181-195. Go to original source...
  23. Mahmud J., Hasanuzzaman M., Nahar K., Rahman A., Hossain M.S., Fujita M. (2017): γ-aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems. Ecotoxicology, 26: 675-690. Go to original source... Go to PubMed...
  24. Malekzadeh P., Khosravi-Nejad F., Hatamnia A.A., Mehr R.S. (2017): Impact of postharvest exogenous γ-aminobutyric acid treatment on cucum-ber fruit in response to chilling tolerance. Physiology and Molecular Biology of Plants, 23: 827-836. Go to original source... Go to PubMed...
  25. Malko M.M., Peng X., Gao X., Cai J., Zhou Q., Wang X., Jiang D. (2023): Effect of exogenous calcium on tolerance of winter wheat to cold stress during stem elongation stage. Plants, 12: 3784. Go to original source... Go to PubMed...
  26. Osman M.E.H., Kasim W.A., Omar M.N., El-Daim I.A.A., Bejai S., Meijer J. (2013): Impact of bacterial priming on some stress tolerance mecha-nisms and growth of cold stressed wheat seedlings. International Journal of Plant Biology, 4: e8. Go to original source...
  27. Palma F., Carvajal F., Jiménez-Muñoz R., Pulido A., Jamilena M., Garrido D. (2019): Exogenous γ-aminobutyric acid treatment improves the cold tolerance of zucchini fruit during postharvest storage. Plant Physiology and Biochemistry, 136: 188-195. Go to original source... Go to PubMed...
  28. Qin Y., Dong X., Dong H., Wang X., Ye T., Wang Q., Duan J., Yu M., Zhang T., Du N., Shen S., Piao F., Guo Z. (2024): γ-aminobutyric acid con-tributes to a novel long-distance signaling in figleaf gourd rootstock-induced cold tolerance of grafted cucumber seedlings. Plant Physiology and Biochemistry, 216: 109168. Go to original source... Go to PubMed...
  29. Rabiei V., Kakavand F., Zaare-Nahandi F., Razavi F., Aghdam M.S. (2019): Nitric oxide and γ-aminobutyric acid treatments delay senescence of cornelian cherry fruits during postharvest cold storage by enhancing antioxidant system activity. Scientia Horticulturae, 243: 268-273. Go to original source...
  30. Rezaei-Chiyaneh E., Seyyedi S.M., Ebrahimian E., Moghaddam S.S., Damalas C.A. (2018): Exogenous application of gamma-aminobutyric acid (GABA) alleviates the effect of water deficit stress in black cumin (Nigella sativa L.). Industrial Crops and Products, 112: 741-748. Go to original source...
  31. Saleem M.S., Hasan M.U. (2022): Postharvest γ-aminobutyric acid application mitigates chilling injury of aonla (Emblica officinalis Gaertn.) fruit during low temperature storage. Postharvest Biology and Technology, 185: 111803. Go to original source...
  32. Shan C., Zhao X. (2015): Lanthanum delays the senescence of Lilium longiflorum cut flowers by improving antioxidant defense system and water retaining capacity. Scientia Horticulturae, 197: 516-520. Go to original source...
  33. Shan C., Liang Z. (2010): Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Science, 178: 130-139. Go to original source...
  34. Sun Y., He Y., Irfan A.R., Liu X., Yu Q., Zhang Q., Yang D. (2020): Exogenous brassinolide enhances the growth and cold resistance of maize (Zea mays L.) seedlings under chilling stress. Agronomy, 10: 488. Go to original source...
  35. Tobiasz-Salach R., Stadnik B., Mazurek M., Buczek J., Leszczyńska D. (2024): Foliar application of silicon influences the physiological and epige-netic responses of wheat grown under salt stress. International Journal of Molecular Sciences, 25: 13297. Go to original source... Go to PubMed...
  36. Vijayakumari K., Puthur J.T. (2016): γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regulation, 78: 57-67. Go to original source...
  37. Yang L., Hou Z., Liu C., Zhu C., Qin Y., Wang X. (2024): Exogenous γ-aminobutyric acid enhanced salt-alkaline tolerance in mulberry trees through transcriptomic sequencing analysis. Plant Stress, 14: 100595. Go to original source...
  38. You G., Sun G., Zhang X., Xiao S. (2015): Cold hardiness and its relationship with the VRN1 genotypes in wheat varieties in the Yellow-Huai-Hai river valley region of China. Acta Agronomica Sinica, 41: 557-564. Go to original source...
  39. Wang H., Bao G., Tian L., Chen S., Xu Y., Li G. (2025): Exogenous γ-aminobutyric acid (GABA) effectively alleviates the synergistic inhibitory effect of freeze-thaw and copper combined stress on rye seedling growth. Journal of Environmental Management, 381: 125362. Go to original source... Go to PubMed...
  40. Wang P., Liu K., Gu Z., Yang R. (2018): Enhanced γ-aminobutyric acid accumulation, alleviated componential deterioration and technofunctionali-ty loss of germinated wheat by hypoxia stress. Food Chemistry, 269: 473-479. Go to original source... Go to PubMed...
  41. Wang T., Gu X., Guo L., Zhang X., Li C. (2024): Integrated metabolomics and transcriptomics analysis reveals γ-aminobutyric acid enhances the ozone tolerance of wheat by accumulation of flavonoids. Journal of Hazardous Materials, 465: 133202. Go to original source... Go to PubMed...
  42. Wu G., Niu X., Chen J., Wu C., Li Y., Li Y., Cui D., He X., Wang F., Li S. (2024): Hydrogen sulfide alleviates oxidative damage under chilling stress through mitogen activated protein kinase in tomato. Antioxidants, 13: 323. Go to original source... Go to PubMed...
  43. Zeng W., Hassan M.J., Kang D., Peng Y., Li Z. (2021): Photosynthetic maintenance and heat shock protein accumulation relating to γ-aminobutyric acid (GABA)-regulated heat tolerance in creeping bentgrass (Agrostis stolonifera). South African Journal of Botany, 141: 405-413. Go to original source...
  44. Zhao G., Chang X., Wang D., Tao Z., Wang Y., Yang Y., Zhu Y. (2018): General situation and development of wheat production. Crops, 4: 1-7.
  45. Zhao Q., Li S., Wang F., Lu J., Tan G., Wang N., Qi F., Zhang C., Deyholos M.K., Zang Z., Zhang J., Zhang J. (2024): Transcriptome analysis and physiological response to heat and cold stress in flax (Linum usitatissimum L) at the seedling stage. Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2024.106076. Go to original source...
  46. Zhao L.Q., Zhang F., Guo J.K., Yang Y.L., Li B.B., Zhang L.X. (2004): Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiology, 134: 849-857. Go to original source... Go to PubMed...
  47. Zheng Y., Han X., Zhang Y., Qiu W., Tao T., Xu Y., Li M., Xie X., Sun P., Zheng G., Fang C., Zhao J. (2025): Preharvest and postharvest γ-aminobutyric acid treatment enhance quality and shelf life in strawberry (Fragaria × ananassa) fruits. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-025-11650-6 Go to original source...
  48. Zhu X., Liao J., Xia X., Xiong F., Li Y., Shen J.Z., Wen B., Ma Y.C, Wang Y.H., Fang W.P. (2019): Physiological and iTRAQ-based proteomic anal-yses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature. BMC Plant Biology, 19: 43. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.