Plant Soil Environ., 2025, 71(7):480-486 | DOI: 10.17221/45/2025-PSE

Corn poppy (Papaver rhoeas L.) resistance to ALS inhibiting and 2,4-D herbicides in Moroccan and Tunisian rainfed wheat fieldsOriginal Paper

Zakia El-Mastouri1, Pavlína Košnarová ORCID...1, Kateřina Hamouzová ORCID...1, Ezzedine Alimi2, Josef Soukup ORCID...1
1 Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
2 Maghreb Phytotest, Tunis, Tunisia

Corn poppy (Papaver rhoeas L.) is one of the most problematic weed species, mainly in rainfed Moroccan and Tunisian cereal crops. The overuse of acetolactate synthase (ALS) inhibiting and/or auxinic herbicides led to the spread of corn poppies resistant to both chemical families in this region. In order to identify and understand the selection drivers of resistance, appropriate characterisation of the resistance profile is necessary. Two experiments were carried out: biological sensitivity tests with ALS inhibiting herbicides (tribenuron-methyl and florasulam) and auxinic herbicides (2,4-d) were carried out with populations sampled in the field where the herbicide failure was observed. Bioassay tests confirmed resistance in all studied populations with an average frequency of 75.13, 30.81, 33.17 and 11.52% with tribenuron, florasulam, 2,4-d and florasulam + 2,4-d, respectively. Corn poppy sampled from both countries exhibited similar frequencies within populations for each tested herbicide. The molecular analysis was conducted with next-generation sequencing (Illumina), allowing massive, precise and rapid sequencing regions of the ALS gene carrying resistance codons. Using this technology, ALS mutant alleles were found in all populations at frequencies ranging from 1.4% to 63.3%, with an average of 16.7%. This study highlights the need to elucidate resistance mechanisms to understand herbicide responses and develop effective strategies for managing resistant corn poppy in rainfed cereals as an essential step to maintain the effectiveness of these molecules as long as possible.

Keywords: broadleaved weeds; weed control; mutation; herbicide resistance

Received: February 4, 2025; Revised: May 26, 2025; Accepted: May 27, 2025; Prepublished online: July 8, 2025; Published: July 31, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
El-Mastouri Z, Košnarová P, Hamouzová K, Alimi E, Soukup J. Corn poppy (Papaver rhoeas L.) resistance to ALS inhibiting and 2,4-D herbicides in Moroccan and Tunisian rainfed wheat fields. Plant Soil Environ. 2025;71(7):480-486. doi: 10.17221/45/2025-PSE.
Download citation

References

  1. Bouhache M. (2018): Résistance du Ray-grass aux herbicides : un nouveau défipour la céréaliculture au Maroc. Agriculture du Maghreb, 101: 68-71.
  2. Bouhache M. (2020): Bases pratiques de désherbage des céréales d'automne au Maroc. Association Marocaine. Protection des Plantes, 2020: 165.
  3. Caballero J.R. (2016): Unravelling herbicide resistance in corn poppy (Papaver rhoeas L.) to improve integrated weed management strategies. Departament d'Hortofructicultura, Botànicai Jardineria Escola Tècnica Superior d'Enginyeria Agrària Universitat de Lleida, 1-157.
  4. Caballero J.R., Menéndez J., Osuna M.D., Salas M., Torra J. (2017): Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas. Pesticide Biochemistry and Physiology, 138: 57-65. Go to original source... Go to PubMed...
  5. Chtourou M., Osuna M.D., Mora Marín G., Hada Z., Torra J., Souissi T. (2024): Occurrence and mechanisms conferring multiple resistance to ALS-inhibiting and auxins mimics herbicides in Papaver rhoeas from Tunisia. Agronomy, 14: 1249. Go to original source...
  6. Délye C., Jasieniuk M., Le Corre V. (2011): Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics, 29: 649-658. Go to original source... Go to PubMed...
  7. Délye C., Michel S., Pernin F., Gautier V., Gislard M., Poncetb C., Le Corre V. (2020): Harnessing the power of next-generation sequencing technologies to the purpose of high throughput pesticide resistance diagnosis. Pest Management Science, 76: 543-552. Go to original source... Go to PubMed...
  8. Délye C., Pernin F., Scarabel L. (2011): Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant Science, 180: 333-342. Go to original source... Go to PubMed...
  9. Duran-Prado M., Osuna M.D., De Prado R., Franco A.R. (2004): Molecular basis of resistance to sulfonylureas in Papaver rhoeas. Pesticide Bio-chemistry and Physiology, 79: 10-17. Go to original source...
  10. El-Mastouri Z., Kosnarova P., Hamouzova K., Alimi E., Soukup J. (2024): Insight into the herbicide resistance patterns in Lolium rigidum populations in Tunisian and Moroccan wheat regions. Frontiers in Plant Science, 15: 1-12. Go to original source... Go to PubMed...
  11. Figueiredo M.R.A., Küpper A., Malone J.M., Petrovic T., Figueiredo A.B.T.B., Campagnola G., Peersen O.B., Prasad K.V.S.K., Patterson E.L., Reddy A.S.N., Kubeš M.F., Napier R., Dayan F.E., Preston C., Gaines T.A. (2022): An in-frame deletion mutation in the degron tail of auxin co-receptor IAA2 confers resistance to the herbicide 2,4-D in Sisymbrium orientale. PNAS, 119: 1-9. Go to original source... Go to PubMed...
  12. Jugulam M., Hall J.C., Johnson W.G., Kelley K.B., Riechers D.E. (2011): Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Science, 59: 445-457. Go to original source...
  13. Jugulam M., Shyam C. (2019): Non-target-site resistance to herbicides: recent developments. Plants, 8: 417-432. Go to original source... Go to PubMed...
  14. Kati V., Scarabel L., Thiery-Lanfranchi D., Kioleoglou V., Liberopoulou S., Délye C. (2019): Multiple resistance of Papaver rhoeas L. to 2,4-D and acetolactate synthase inhibitors in four European countries. Weed Research, 59: 367-376. Go to original source...
  15. Koreki A., Michel S., Lebeaux C., Trouilhb L., Délye C. (2023): Prevalence, spatial structure and evolution of resistance to acetolactate-synthase (ALS) inhibitors and 2,4-D in the major weed Papaver rhoeas (L.) assessed using a massive, country-wide sampling. Pest Management Science, 80: 637-647. Go to original source... Go to PubMed...
  16. LeClere S., Wu C., Westra P., Sammons R.D. (2018): Cross-resistance to dicamba, 2,4-D, and fluroxypyr in Kochia scoparia is endowed by a mutation in an AUX/IAA gene. PNAS, 115: 2911-2920. Go to original source... Go to PubMed...
  17. Menchari Y., Annabi M., Bahri H., Latiri K. (2016): Herbicides use in wheat crop in Tunisia: trends, variability and relation with weed resistance development. Research in Agriculture and Agronomy, 2016: 1-16.
  18. Moss S.R., Clarke J.H., Blair A.M., Culley T.N., Read M.A., Ryan P.J., Turner M. (1999): The occurrence of herbicide-resistant grass-weeds in the United Kingdom and a new system for designating resistance in screening assays. Proceedings Brighton Crop Protection Conference Weeds, 1999: 179-184.
  19. Powles S.B., Yu Q. (2010): Evolution in action: plants resistant to herbicides. The Annual Review of Plant Biology, 61: 317-347. Go to original source... Go to PubMed...
  20. Scarabel L., Pernin F., Déyle C. (2015): Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant Science, 238: 158-169. Go to original source... Go to PubMed...
  21. Stankiewicz-Kosyl M., Haliniarz M., Wrochna M., Obrępalska-Stęplowska A., Kuc P., Łukasz J., Wińska-Krysiak M., Wrzesińska-Krupa B., Puła J., Podsiadło C., Domaradzki K., Piekarczyk M., Bednarczyk M., Katarzyna M. (2023): Occurrence and mechanism of Papaver rhoeas ALS inhibitor resistance in Poland. Agriculture, 13: 82-97. Go to original source...
  22. Stankiewicz-Kosyl M., Synowiec A., Haliniarz M., Wenda-Piesik A., Domaradzki K., Parylak D., Wrochna M., Pytlarz E., Gala-Czekaj D., Marczewska-Kolasa K., Marcinkowska K., Praczyk T. (2020): Herbicide resistance and management options of Papaver rhoeas L. and Centaurea cyanus L. in Europe: a review. Agronomy, 16: 1-22. Go to original source...
  23. Suzukawa A.K., Bobadilla L.K., Mallory-Smith C., Brunharo C.A.C.G. (2021): Non-target-site resistance in Lolium spp. globally: a review. Frontiers in Plant Science, 11: 1-17. Go to original source... Go to PubMed...
  24. Tanji A. (2024): Weed management in small grain cereals in Morocco, a review. Sustainable, 2024: 155-185.
  25. Todd E.A., Figueiredo M.R.A., Morran S., Soni N., Preston C., Kubeš M.F., Napier R., Gaines T.A. (2020): Synthetic auxin herbicides: finding the lock and key to weed resistance. Plant Science, 300: 1-8. Go to original source... Go to PubMed...
  26. Torra J., Rojano-Delgado A.M., Menendez J., Salas M., De Prado R. (2021): Cytochrome P450 metabolism-based herbicide resistance to imaza-mox and 2,4-D in Papaver rhoeas. Plant Physiology and Biochemistry, 160: 51-61. Go to original source... Go to PubMed...
  27. Torra J., Rojano-Delgado A.M., Rey-Caballero J., Royo-Esnal A., Salas M., De Prado R. (2017): Enhanced 2,4-D metabolism in two resistant Papaver rhoeas populations from Spain. Frontiers in Plant Science, 8: 1-11. Go to original source... Go to PubMed...
  28. Tranel P.J., Wright T.R., Heap I.M. (2024): Mutations in herbicide-resistant weeds to inhibition of acetolactate synthase. Available at: online: www.weedscience.com

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.