Plant Soil Environ., 2025, 71(10):708-721 | DOI: 10.17221/265/2025-PSE

Lignite-derived organic fertiliser enhanced the carbon sequestration capacity of woody plant by improving soil quality and promoting plant growthOriginal Paper

Qianru Wu1,2, Ruofan Bu1,2, Taotao Wang1,2, Bei Zhang3, Kylan Jin4, Liang Chen1,2
1 State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, P.R. China
2 School of Civil Engineering, Tianjin University, Tianjin, P.R. China
3 College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, P.R. China
4 Department of Life Sciences, University of California Los Angeles, Los Angeles, USA

As essential natural carbon sinks, woody plants play a key role in urban ecological restoration. The lignite-derived organic fertiliser (LOF) may promote plant growth and carbon sequestration by improving soil properties. This study investigated LOF effects on three typical woody plants – Styphnolobium japonicum (L.) Schott. with taproots, Malus × micromalus Makino with fibrous roots, and Malus domestica Borkh. with both taproots and fibrous roots – focused on soil properties improvement during a three-year planting experiment (2021–2023). The results indicated that LOF application significantly increased soil organic matter (SOM) content, with and without woody plants, by 82.3% and 54.9%, respectively. Concurrently, LOF influenced soil microbial characteristics, especially enhancing the 16S rRNA gene copy number by 0.99 times. For plant growth, LOF application increased root length, volume, and tip number in Malus domestica Borkh. by 37.4, 27.4, and 26.0%, respectively, and in Styphnolobium japonicum (L.) Schott by 43.8, 76.7, and 26.6%, respectively. However, in Malus × micromalus Makino, while root volume increased by 3.8%, root length and tip number decreased by 10.0% and 26.9%, respectively. Additionally, the LOF application increased the soil plant analysis development (SPAD) values of woody plant leaves by 5.3%, indicating improved chlorophyll content and plant health. These findings demonstrate that LOF applications may significantly enhance soil quality and promote plant growth, contributing to improved terrestrial carbon sequestration.

Keywords: terrestrial ecosystem; lignite-based organic fertiliser; soil amendment; soil organic matter; plant roots

Received: June 15, 2025; Revised: September 19, 2025; Accepted: September 29, 2025; Prepublished online: October 12, 2025; Published: October 21, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Wu Q, Bu R, Wang T, Zhang B, Jin K, Chen L. Lignite-derived organic fertiliser enhanced the carbon sequestration capacity of woody plant by improving soil quality and promoting plant growth. Plant Soil Environ. 2025;71(10):708-721. doi: 10.17221/265/2025-PSE.
Download citation
PDF will be unlocked 21.10.2026

References

  1. A'Aqoulah A., Albalas S., Albalas M., Alherbish R.A., Innab N. (2024): Comparative analysis and spatial distribution of the primary health care centers and health manpower across Saudi Arabia using Shapiro-wilk test. Journal of Multidisciplinary Healthcare, 17: 4851-4861. Go to original source... Go to PubMed...
  2. Adamczyk B., Sietiö O.-M., Straková P., Prommer J., Wild B., Hagner M., Pihlatie M., Fritze H., Richter A., Heinonsalo J. (2019): Plant roots increase both decomposition and stable organic matter formation in boreal forest soil. Nature Communications, 10: 3982. Go to original source... Go to PubMed...
  3. Akimbekov N., Qiao X., Digel I., Abdieva G., Ualieva P., Zhubanova A. (2020): The effect of leonardite-derived amendments on soil microbiome structure and potato yield. Agriculture, 10: 147. Go to original source...
  4. Allison S.D., Martiny J.B.H. (2008): Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 105: 11512-11519. Go to original source... Go to PubMed...
  5. Anwar T., Qureshi H., Jabeen M., Siddiqi E.H., Zaman W., Alharbi S.A., Ansari M.J. (2024): Exploring the synergistic benefits of biochar and gibberellic acid in alleviating cadmium toxicity. Scientific Reports, 14: 24196. Go to original source... Go to PubMed...
  6. Aydogan E.L., Moser G., Müller C., Kämpfer P., Glaeser S.P. (2018): Long-term warming shifts the composition of bacterial communities in the phyllosphere of Gallium album in a permanent grassland field experiment. Frontiers in Microbiology, 9: 144. Go to original source... Go to PubMed...
  7. Bradford M.A., Wieder W.R., Bonan G.B., Fierer N., Raymond P.A., Crowther T.W. (2016): Managing uncertainty in soil carbon feedback to climate change. Nature Climate Change, 6: 751-758. Go to original source...
  8. Cai Z.C. (2022): The role of soil in the formation of plant biodiversity and its research significance. Acta Pedologica Sinica, 59: 1-9. (In Chinese)
  9. Chaplot V., Cooper M. (2015): Soil aggregate stability to predict organic carbon outputs from soils. Geoderma, 243-244: 205-213. Go to original source...
  10. Chen H., Tang H., Guo J., Pan C., Wang R., Wu Y., Yu Y. (2023): Root exudates' roles and analytical techniques progress. Soils, 55: 225-233.
  11. Chen L., Fang K., Wei B., Qin S., Feng X., Hu T., Ji C., Yang Y. (2021): Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecology Letters, 24: 1018-1028. Go to original source... Go to PubMed...
  12. Chen Z., Huang G., Li Y., Zhang X., Xiong Y., Huang Q., Jin S. (2022a): Effects of the lignite bioorganic fertilizer on greenhouse gas emissions and pathways of nitrogen and carbon cycling in saline-sodic farmlands at Northwest China. Journal of Cleaner Production, 334: 130080. Go to original source...
  13. Chen Z., Li Y., Hu M., Xiong Y., Huang Q., Jin S., Huang G. (2023): Lignite bioorganic fertiliser enhanced microbial co-occurrence network stability and plant-microbe interactions in saline-sodic soil. Science of The Total Environment, 879: 163113. Go to original source... Go to PubMed...
  14. Chen Z., Li Y., Zhang X., Xiong Y., Huang Q., Jin S., Sun S., Chi D., Huang G. (2022b): Effects of lignite bioorganic product on sunflower growth, water and nitrogen productivity in saline-sodic farmlands at northwest China. Agricultural Water Management, 271: 107806. Go to original source...
  15. Chu Y., Wang Y.N., Chen L., Guo L.L., Cheng Z.G. (2022): Effects of lignite based organic fertilizer and soil ecological conditioner on ginger soil nutrients and ginger growth. Acta Pedologica Sinica, 4: 60-64 + 67.
  16. Erktan A., Cécillon L., Graf F., Roumet C., Legout C., Rey F. (2016): Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics. Plant and Soil, 398: 121-137. Go to original source...
  17. Fallgren P.H., Chen L., Peng M., Urynowicz M.A., Jin S. (2021): Facultative-anaerobic microbial digestion of coal preparation waste and use of effluent solids to enhance plant growth in a sandy soil. International Journal of Coal Science and Technology, 8: 767-779. Go to original source...
  18. Fan W.G., Yang H.Q. (2009): Effects of different mediums on growth, root morphology, and nutrient uptake of Malus hupehensis. Plant Nutrition and Fertilizer Science, 15: 936-941.
  19. Fang H.R., Liu J.J., Chen X.L., Jiang Y., Liu Z.X., Gu H.D., Wan S.M., Xiao Y. (2024): Effects of long-term combined application of organic and chemical fertilizers on bacterial community characteristics and soybean yields. Chinese Journal of Eco-Agriculture, 32: 804-815.
  20. Fierer N., Wood S.A., Bueno de Mesquita C.P. (2021): How microbes can, and cannot, be used to assess soil health. Soil Biology and Biochemistry, 153: 108111. Go to original source...
  21. Fini A., Vigevani I., Corsini D., Wężyk P., Bajorek-Zydroń K., Failla O., Cagnolati E., Mielczarek L., Comin S., Gibin M., Pasquinelli A., Ferrini F., Viskanic P. (2024): Corrigendum to "CO2-assimilation, sequestration, and storage by urban woody species growing in parks and along streets in two climatic zones". Science of The Total Environment, 927: 172355. Go to original source... Go to PubMed...
  22. Friedlingstein P., O'Sullivan M., Jones M.W., Andrew R.M., Bakker D.C.E., et al. (2023): Global carbon budget 2023. Earth System Science Data, 15: 5301-5369. Go to original source...
  23. Fu Y.J., Tian D., Hou Z.Y., Wang M.G., Zhang N.L. (2022): Review on the evaluation of global forest carbon sink function. Journal of Beijing Forestry University, 44: 1-10.
  24. Guan X., Cheng Z., Li Y., Wang J., Zhao R., Guo Z., Zhao T., Huang L., Qiu C., Shi W., Jin S. (2023): Mixed organic and inorganic amendments enhance soil microbial interactions and environmental stress resistance of Tibetan barley on plateau farmland. Journal of Environmental Man-agement, 330: 117137. Go to original source... Go to PubMed...
  25. Han X., Zhao Y., Chen Y., Xu J., Jiang C., Wang X., Zhuo R., Lu M.-Z., Zhang J. (2022): Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. Forestry Research, 2: 9. Go to original source... Go to PubMed...
  26. Hartmann M., Frey B., Mayer J., Maeder P., Widmer F. (2015): Distinct soil microbial diversity under long-term organic and conventional farming. ISME Journal, 9: 1177-1194. Go to original source... Go to PubMed...
  27. Hoffland E., Kuyper T.W., Comans R.N.J., Creamer R.E. (2020): Eco-functionality of organic matter in soils. Plant and Soil, 455: 1-22. Go to original source...
  28. Huai S.C., Liu L.L., Ru J.R., Yan Z.H., Wang J.Y., Wang S.C., Xing T.T., Wu H.L., Lu C.A., Sun J.Y. (2020): Effect of applying organic manure on improving soil physical properties and promoting root growth. Soil and Fertilizer Science in China, 2: 40-46.
  29. Huang S.W., Zhao Y.K., Zhu X.Y., Liu H.L., Liu J.J., Chen S., Chen J.Y., Zhang A.F. (2023): Integrated analysis of soil organic matter molecular composition changes under different land uses. Environmental Science, 45: 2848-2858. Go to original source...
  30. Jeanne T., Parent S., Hogue R. (2019): Using a soil bacterial species balance index to estimate potato crop productivity. Plos One, 14: e0214089. Go to original source... Go to PubMed...
  31. Ji R., Dong G., Shi W., Min J. (2017): Effects of liquid organic fertilizers on plant growth and rhizosphere soil characteristics of chrysanthemum. Sustainability, 9: 841. Go to original source...
  32. Ji Y.L., Wang Y.X., Guo L., Gu X. (2024): Meta-analysis of organic fertilizer of Chinese medicine residue on crop growth, soil chemical properties, and enzyme activities. Northern Horticulture, 4: 57-65.
  33. Kong Z., Liu H. (2022): Modification of rhizosphere microbial communities: a possible mechanism of plant growth-promoting rhizobacteria enhancing plant growth and fitness. Frontiers in Plant Science, 13: 2022. Go to original source... Go to PubMed...
  34. Kuerban Z., Tuerhong T., Tu Z.D., Yilahong A. (2021): Effects of different fertilizers on photosynthetic characteristics and yield of sorghum leaves in arid areas. Acta Agriculturae Boreali-Sinica, 36: 127-134.
  35. Lee E., Cho G., Kim J. (2024): Structural basis for membrane association and catalysis by phosphatidylserine synthase in Escherichia coli. Science Advances, 10: eadq4624. Go to original source...
  36. Leng Y., Li W., Ciais P., Sun M., Zhu L., Yue C., Chang J., Yao Y., Zhang Y., Zhou J., Li Z., Wang X., Xi Y., Peng S. (2024): Forest aging limits future carbon sink in China. One Earth, 7: 822-834. Go to original source...
  37. Li F.D., Li Z.X., Qiao Y.F., Liu S.B., Tian C., Zhu N., Hirwa H., Measho S. (2023): Using soil organic carbon isotope composition analysis to elucidate the carbon cycle of agroecosystems. Chinese Journal of Eco-Agriculture, 31: 194-205.
  38. Li H., Xie Z.Q., Li B.Y. (2023): Effects of humic acid organic fertilizer on photosynthetic fluorescence parameters and fruit quality of Ziziphus jujuba cv. Lingwuchangzao. Non-wood Forest Research, 41: 133-141.
  39. Li J.F., Ma H.T., Hu X.M., Chen L., Fallgren P.H. (2025): Effects of woody plant roots on migration of ciprofloxacin and tylosin in soil. Journal of Contaminant Hydrology, 27: 104698. Go to original source... Go to PubMed...
  40. Li N., You M.Y., Zhang B., Han X.Z., Panakoulia S.K., Yuan Y.R., Liu K., Qiao Y.F., Zou W.X., Nikolaidis N.P., Banwart S.A. (2017): Chapter seven - Modeling soil aggregation at the early pedogenesis stage from the parent material of a mollisol under different agricultural practices. In: Banwart S.A., Sparks D.L. (eds.): Advances in Agronomy. New York, Academic Press, 181-214. ISBN-10: 012391678X Go to original source...
  41. Li Y., Gong J., Liu J., Hou W., Moroenyane I., Liu Y., Jin J., Liu J., Xiong H., Cheng C., Malik K., Wang J., Yi Y. (2022): Effects of different land use types and soil depth on soil nutrients and soil bacterial communities in a karst area, southwest China. Soil Systems, 6: 20. Go to original source...
  42. Lian J.S., Wang H.Y., Xu M.G., Wei W.L., Duan Y.H., Liu S.T. (2021): Diversity and function prediction of bacteria community in fluvo-aquic soils as affected by long-term organic fertilization. Journal of Plant Nutrition and Fertilizers, 27: 2073-2082.
  43. Lin H.H., Lin J.W., Chen C.C., Hsu C.H., Lai B.S., Lin T.Y. (2021): Effects of leisure obstacles, job satisfaction, and physical and mental health on job intentions of medical workers exposed to covid-19 infection risk and workplace stress. Healthcare, 9: 1569. Go to original source... Go to PubMed...
  44. Lin Y., Ye G., Kuzyakov Y., Liu D., Fan J., Ding W. (2019): Long-term manure application increases soil organic matter and aggregation and alters microbial community structure and keystone taxa. Soil Biology and Biochemistry, 134: 187-196. Go to original source...
  45. Liu Y.Q., Mu Y., Chen K.Y., Li Y.M., Guo J.H. (2020): Daily activity feature selection in smart homes based on Pearson correlation coefficient. Neural Processing Letters, 51: 1771-1787. Go to original source...
  46. Liu Z., Deng Z., Davis S.J., Ciais P. (2024): Global carbon emissions in 2023. Nature Reviews Earth and Environment, 5: 253-254. Go to original source...
  47. Luo L., Wang J., Lv J., Liu Z., Sun T., Yang Y., Zhu Y.G. (2023): Carbon sequestration strategies in soil using biochar: advances, challenges, and opportunities. Environmental Science and Technology, 57: 11357-11372. Go to original source... Go to PubMed...
  48. Moingt M., Lucotte M., Paquet S. (2016): Lignin biomarkers signatures of common plants and soils of eastern Canada. Biogeochemistry, 129: 133-148. Go to original source...
  49. Podmirseg S.M., Waldhuber S., Knapp B.A., Insam H., Goberna M. (2019): Robustness of the autochthonous microbial soil community after amendment of cattle manure or its digestate. Biology and Fertility of Soils, 55: 565-576. Go to original source...
  50. Poirier V., Roumet C., Munson A.D. (2018): The root of the matter: linking root traits and soil organic matter stabilization processes. Soil Biology and Biochemistry, 120: 246-259. Go to original source...
  51. Qiu J.Y., Lei S.W., Lian H., Guo H.N., Chen R.Q., Ou X., Zhong Y.P., Zhang Q., Wu L.J. (2024): Response of Pennisetum purpureum × P. america-na yield and root growth to fertilizations in rare earth tailings. Chinese Journal of Ecology, 43: 2093-2101.
  52. Reilly K., Cullen E., Lola-Luz T., Stone D., Valverde J., Gaffney M., Brunton N., Grant J., Griffiths B.S. (2013): Effect of organic, conventional and mixed cultivation practices on soil microbial community structure and nematode abundance in a cultivated onion crop. Journal of the Science of Food and Agriculture, 93: 3700-3709. Go to original source... Go to PubMed...
  53. Ren Y., Jiang P.K., Lu C.G., Shao J.J., Zhou X.E., Chen J.H. (2022): Effects of biochar-based fertilizer and organic fertilizer substituting chemical fertilizer partially on soil microbial abundances and enzyme activities. Journal of Zhejiang A&F University, 39: 860-868.
  54. Sasse J., Martinoia E., Northen T. (2018): Feed your friends: do plant exudates shape the root microbiome? Trends in Plant Science, 23: 25-41. Go to original source... Go to PubMed...
  55. Schillem S., Schneider B.U., Zeihser U., Hüttl R.F. (2019): Effect of N-modified lignite granulates and composted biochar on plant growth, nitrogen and water use efficiency of spring wheat. Archives of Agronomy and Soil Science, 65: 1913-1925. Go to original source...
  56. Semenov M.V., Krasnov G.S., Semenov V.M., Ksenofontova N., Zinyakova N.B., van Bruggen A.H.C. (2021): Does fresh farmyard manure intro-duce surviving microbes into soil or activate soil-borne microbiota? Journal of Environmental Management, 294: 113018. Go to original source... Go to PubMed...
  57. Semenov M.V., Krasnov G.S., Semenov V.M., van Bruggen A.H.C. (2020): Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Applied Soil Ecology, 154: 103641. Go to original source...
  58. Shao H.Y., Li Z.Y., Liu D., Li Y.F., Lu L., Wang X.D., Zhang A.F., Wang Y.L. (2019): Effects of manure application rates on the soil carbon fractions and aggregate stability. Environmental Science, 40: 4691-4699.
  59. Shu X., Liu W., Huang H., Ye Q., Zhu S., Peng Z., Li Y., Deng L., Yang Z., Chen H., Liu D., Shi J. (2023): Meta-analysis of organic fertilization effects on soil bacterial diversity and community composition in agroecosystems. Plants-Basel, 12: 3801. Go to original source... Go to PubMed...
  60. Tang R., Sun Y.X., Dai Q., Lin Q.M., Xie L.H. (2018): Research methods and progress of soil aggregate microstructure. Journal of Henan Agricultural Sciences, 47: 8-15.
  61. Tang X., Zhao X., Bai Y., Tang Z., Wang W., Zhao Y., Wan H., Xie Z., Shi X., Wu B., Wang G., Yan J., Ma K., Du S., Li S., Han S., Ma Y., Hu H., He N., Yang Y., Han W., He H., Yu G., Fang J., Zhou G. (2018): Carbon pools in China's terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences, 115: 4021-4026. Go to original source... Go to PubMed...
  62. Tiessen H., Cuevas E., Chacon P. (1994): The role of soil organic matter in sustaining soil fertility. Nature, 371: 783-785. Go to original source...
  63. Wang X.L., Liu F.Z., Shi X.B., Wang X.D., Ji X.H., Wang Z.Q., Wang B.L., Zheng X.C., Wang H.B. (2019): Effects of organic fertilizers on root growth and soil nutrition of grape. Acta Agriculturae Boreali-Sinica, 34: 177-184.
  64. Wei L., Li J., Qu K., Chen H., Wang M., Xia S., Cai H., Long X.-E., Miao Y., Liu D. (2024): Organic fertilizer application promotes the soil nitrogen cycle and plant starch and sucrose metabolism to improve the yield of Pinelli ternata. Scientific Reports, 14: 12722. Go to original source... Go to PubMed...
  65. Wu J., Liu S., Peng C., Luo Y., Terrer C., Yue C., Peng S., Li J., Wang B., Shangguan Z., Deng L. (2024): Future soil organic carbon stocks in China under climate change. Cell Reports Sustainability, 1: 100179. Go to original source...
  66. Xie T., Hou Y., Chen W.P., Wang M.E., Lv S.D., Li X.Z. (2019): Impact of urbanization on the soil ecological environment: a review. Acta Ecologica Sinica, 39: 1154-1164. Go to original source...
  67. Xiong Y.B., Yu S.P., Yang Y., Huang L., Yu H.B., Tang L. (2024): Effects of different proportions of chemical fertilizer reduction combined with organic fertilizer supplements on organic carbon sequestration in Tobacco-planting soil. Chinese Journal of Eco-Agriculture, 32: 262-272.
  68. Yang H.Q., Jie Y.L., Huang T.D., Shu H.R. (2001): The induction of root formation by urea, iba and sheep dung in young apple tree. Scientia Agricultura Sinica, 34: 1-4.
  69. Yang L.N., Qian X., Zhao Z.Y., Wang Y.Y., Ding G., Xing X.K. (2024): Mechanisms of rhizosphere plant-microbe interactions: molecular insights into microbial colonization. Frontiers in Plant Science, 15: 1491495. Go to original source... Go to PubMed...
  70. Yao J.H., Wu J.N., Wang C.Y., Cui Y.T., Gao Y.H., Sun J.L., Liu S.X. (2024): Changes in aggregates stability and organic carbon content of black soil following the use of different long-term nitrogen application rates. Journal of Agro-Environment Science, 43: 102-110.
  71. Ye S., Peng B., Liu T. (2022): Effects of organic fertilizers on growth characteristics and fruit quality in pear-jujube in the Loess Plateau. Scientific Reports, 12: 13372. Go to original source... Go to PubMed...
  72. Zhang B., Chen L., Guo Q.Z., Zhang Z.X., Lian J.J. (2023): Characteristics of nitrogen distribution and its response to microecosystem changes in green infrastructure with different woody plants. Chemosphere, 313: 137371. Go to original source... Go to PubMed...
  73. Zhang H., Zhang X., Gao F., Qu Y.T., Chen X.L., Li Y.T., Li H.Y. (2023): Leaf functional traits of woody plants in urban parks and their drivers of carbon sequestration capacity. Jiangsu Agricultural Sciences, 51: 173-180.
  74. Zhang R., Yang P., Liu S., Wang C., Liu J. (2022): Evaluation of the methods for estimating leaf chlorophyll content with SPAD chlorophyll meters. Remote Sensing, 14: 20. Go to original source...
  75. Zhao M., Zhao J., Yuan J., Hale L., Wen T., Huang Q., Vivanco J.M., Zhou J., Kowalchuk G.A., Shen Q. (2021): Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant, Cell and Environment, 44: 613-628. Go to original source... Go to PubMed...
  76. Zhao S., Yang Z.Y., Musa S.S., Ran J.J., Chong M.K.C., Javanbakht M., He D.H., Wang M.H. (2021): Attach importance of the bootstrap t-test against Student's t-test in clinical epidemiology: a demonstrative comparison using covid-19 as an example. Epidemiology and Infection, 149: 1-6. Go to original source... Go to PubMed...
  77. Zhou T.H., Fan Q.Z. (2008): Effects of organic fertilizer on the growth and quality of red Fuji apples. Soil and Fertilizer Science in China, 2: 52-55.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.