Plant Soil Environ., 2025, 71(10):750-758 | DOI: 10.17221/67/2025-PSE

Influence of nitrogen, sulphur, and selenium foliar application on yield and accumulation of selenium in spring wheat grains (Triticum aestivum L.)Original Paper

Ladislav Ducsay ORCID...1, Alexandra Zapletalová ORCID...1, Mária Vicianová ORCID...1, Ladislav Varga ORCID...1, Marek Slepčan1, Marek Rašovský ORCID...2, Vladimír Pačuta ORCID...2, Dávid Ernst ORCID...2, Peter Hozlár4, Daša Kubatková1, Jakub Sitkey3
1 Institute of Agrochemistry and Soil Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovak Republic
2 Institute of Plant Production, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovak Republic
3 Institute of Nutrition and Genetics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovak Republic
4 National Agricultural and Food Centre, Research and Breeding Station, Vígľaš Pstruša, Slovak Republic

The study is focused on the evaluation of selenium, nitrogen and sulphur effects on yield, macro- and micronutrient content (N, P, K, Ca, Mg, S, Zn, Fe, Mn, Cu) and quality (Se content, starch, fibre, ash and fat) in wheat grain. Small-plot field experiments (10 m2 each plot) were established on loam to clay loam mollic soil with total Se content 0.21–0.22 mg/kg in Želiezovce on the land of the Central Control and Testing Institute in Agriculture of the Slovak Republic. The effect of growing season on two sources of selenium, in the form of sodium selenite (Na2SeO3 · 5 H2O) and sodium selenate (Na2SeO4), was monitored during the growth phase BBCH 29 (the end of the tillering phase) in a two-year experiment. The experiment included six foliar treatments in four repetitions, which were differentiated as follows: T1 – 30 kg N/ha; T1 Se032– – 30 kg N/ha and 20 g Se/ha; T1 Se042– – 30 kg N/ha and 20 g Se/ha; T2 – 30 kg N/ha and 10 kg S/ha; T2 Se032– – 30 kg N/ha, 10 kg S/ha and 20 g Se/ha; T2 Se042– – 30 kg N/ha, 10 kg S/ha and 20 g Se/ha. A statistically significant difference in yield was found between the growing seasons. Statistically non-significant impact of treatments on achieved yields was found. The highest average Se content in grain, 0.90 ± 0.28 mg/kg, was achieved on treatment T2 Se042–. The application of sodium selenite appeared to be less effective than selenate form in the evaluation of average Se content in grain, where statistically significantly higher Se contents (T1 Se042– 0.78 ± 0.22 mg/kg; T2 Se042– 0.90 ± 0.28 mg/kg) were found after selenate application. The application of two types of fertilisers and two forms of selenium did not significantly increase the content of N, P, Mg, and S in grain. The Fe content in the grain was increased by treatment T2 Se032–. The application of sodium selenate compared to sodium selenite significantly increased the starch content (T1 Se042– 56.39 ± 4.44%; T2 Se042– 55.87 ± 4.05) in the grain of spring wheat.

Keywords: nutritional value; deficiency; biofortification; plant uptake; fertilisation

Received: February 19, 2025; Revised: September 25, 2025; Accepted: October 1, 2025; Prepublished online: October 17, 2025; Published: October 21, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ducsay L, Zapletalová A, Vicianová M, Varga L, Slepčan M, Rašovský M, et al.. Influence of nitrogen, sulphur, and selenium foliar application on yield and accumulation of selenium in spring wheat grains (Triticum aestivum L.). Plant Soil Environ. 2025;71(10):750-758. doi: 10.17221/67/2025-PSE.
Download citation
PDF will be unlocked 21.10.2026

References

  1. Alves L.R., Prado E.R., de Oliveira R., Santos E.F., de Souza I.L., Azevedo R.A., Gratão P.L. (2020): Mechanisms of cadmium-stress avoidance by selenium in tomato plants. Ecotoxicology, 29: 594-606. Go to original source... Go to PubMed...
  2. Balík J. (2024): Reasonable Use of Fertilisers Dedicated to Micronutrients in Soil-Plant-Fodder-Food System. 1st Edition. Prague, Powerprint. ISBN978-3-12732-320-7
  3. Beshah Y.B., Pascatore A., Guerrini L., Vivoli R., Napoli M. (2025): Enhancing nutritional value of common wheat: impact of foliar selenium application on grain yield and quality under rainfed conditions. Field Crops Research, 330: 109969. Go to original source...
  4. Broadley M.R., Alcoc J., Alford J., Cartwright P., Foot I., Fairweathertait S.J., Hart D.J., Hurst R., Knott P., McGrath S.P., Meacham M.C., Norman K., Mowat H., Scott P., Stround J.L., Tovey M., Tucker M., White P.J., Young S.D., Zhao F.-J. (2010): Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant and Soil, 332: 5-18. Go to original source...
  5. Coppin F., Chabroullet C., Martin-Garin A. (2009): Selenite interactions with some particulate organic and mineral fractions isolated from a natural grassland soil. European Journal of Soil Science, 60: 369-376. https://doi.org/10.1111/j.1365-2389.2009.01127.x Go to original source...
  6. Curtin D., Hanson R., Van Der Weerden T.J. (2008): Effect of selenium fertiliser formulation and rate of application on selenium concentrations in irrigated and dryland wheat (Triticum aestivum). New Zealand Journal of Crop and Horticultural Science, 36: 1-7. Go to original source...
  7. Dai H., Wei S., Skuza L., Jia G. (2019): Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation. Ecotoxicology and Environmental Safety, 180: 179-184. Go to original source... Go to PubMed...
  8. D'Amato R., Petrelli M., Proietti P., Onofri A., Regni L., Perugini D., Businelli D. (2018): Determination of changes in the concentration and distribution of elements within olive drupes (cv. Leccino) from Se biofortified plants, using laser ablation inductively coupled plasma mass spectrometry. Journal ot the Science of Food and Agriculture, 98: 4971-4977. Go to original source... Go to PubMed...
  9. Drahoňovský J., Száková J., Mestek O., Tremlová J., Kaňa A., Najmanová J., Tlustoš P. (2016): Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environmental and Experimental Botany, 125: 12-19. Go to original source...
  10. do Nascimento da Silva E., Cadore S. (2019): Bioavailability assessment of copper, iron, manganese, molybdenum, selenium, and zinc from selenium-enriched lettuce. Journal of Food Science, 84: 2840-2846. Go to original source... Go to PubMed...
  11. Dos Santos M.J.V., de Lima Lessa J.H., de Assis M.B., Raymundo J.F., Ribeiro B.T., Guilherme L.R.G., Lopes G. (2022): Selenium desorption in tropical soils by sulfate and phosphate, and selenium biofortification of Mombaça grass under increasing rates of phosphate fertilisation. Crop and Pasture Science, 73: 56-66. Go to original source...
  12. Ducsay L., Ložek O., Marček M., Varényiová M., Hozlár P., Lošák T. (2016): Possibility of selenium biofortification of winter wheat grain. Plant, Soil and Environment, 62: 379-383. Go to original source...
  13. Ernst D., Kovár M., Černý I. (2016): Effect of two different plant growth regulators on production traits of sunflower. Journal Central European Agriculture, 17: 998-1012. Go to original source...
  14. Feng R., Wei C., Tu S., Wu F. (2009): Effects of Se on the uptake of essential elements in Pteris vittata L. Plant and Soil, 325: 123-132. Go to original source...
  15. Grant C.A., Buckley W.T., Wu R. (2007): Effect of selenium fertilizer source and rate on grain yield and selenium and cadmium concentration of durum wheat. Canadian Journal of Plant Science, 87: 703-708. Go to original source...
  16. Hartikainen H., Xue T., Piironen V. (2000): Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant and Soil, 225: 193-200. Go to original source...
  17. Ismail M.S., Nawaz F., Shehzad M., Ul Haq T., Muhammad Y., Ashraf M.Y. (2024): Selenium biofortification impacts nutritional composition and storage proteins in wheat grains. Journal of Food Composition and Analysis, 127: 105961. Go to original source...
  18. Klikocka H., Szostak B., Barczak B., Kobiałka A. (2017): Effect of sulphur and nitrogen fertilization on the selenium content and uptake by grain of spring wheat. Journal of Elementology, 22: 985-994. Go to original source...
  19. Li J., Lens P.N.L., Otero-Gonzalez L., Du Laing G. (2020): Production of selenium- and zinc-enriched Lemna and Azolla as potential micronutrient-enriched bioproducts. Water Research, 172: 115522. Go to original source... Go to PubMed...
  20. Li S., Chen H., Jiang S., Hu F., Xing D., Du B. (2023): Selenium and nitrogen fertilizer management improves potato root function, photosynthesis, yield and selenium enrichment. Sustainability, 15: 6060. Go to original source...
  21. Li X., Li B., Yang Y. (2018): Effects of foliar selenite on the nutrient components of turnip (Brassica rapa var. rapa Linn.). Frontiers in Chemistry, 6: 42. Go to original source... Go to PubMed...
  22. Liu X., Yang Y., Deng X., Li M., Zhang W., Zhao Z. (2017): Effects of sulfur and sulfate on selenium uptake and quality of seeds in rapeseed (Brassica napus L.) treated with selenite and selenate. Environmental and Experimental Botany, 135: 13-20. Go to original source...
  23. Mantel S., Dondeyne S., Deckers S. (2023): World Reference Base for Soil Resources (WRB). Encyclopedia of Soils in the Environment. 2nd Edition. Amsterdam, Elsevier, 1-12. Go to original source...
  24. Meng T., Huang S., Yu Y., Sun Z., Wu J., Akram Z., Zhang Z., Liu Y. (2025): Evaluation of yield, nutritional quality, and Se distribution in black-grained wheat and bioavailable Se concentrations in soil under irrigation and Se fertilizer application. Frontiers in Plant Science, 16: 1521113. Go to original source... Go to PubMed...
  25. Meucci A., Shiriaev A., Rosellini I., Malorgio F., Pezzarossa B. (2021): Se-enrichment pattern, composition, and aroma profile of ripe tomatoes after sodium selenate foliar spraying performed at different plant developmental stages. Plants, 10: 1050. Go to original source... Go to PubMed...
  26. Pačuta V., Rašovský M., Briediková N., Lenická D., Ducsay L., Zapletalová A. (2024): Plant biostimulants as an effective tool for increasing physiological activity and productivity of different sugar beet varieties. Agronomy, 14: 62. Go to original source...
  27. Placzek A., Patorczyk-Pytlik B. (2014): Effect of form and dose of selenium on yielding and contents of macronutrients in maize. Ecological Chemistry and Engineering A, 21: 241-25.
  28. Poblaciones M.J., Rodrigo S., Santamaría O., Chen Y., McGrath S.P. (2014): Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: from grain to cooked pasta. Food Chemistry, 146: 378-384. Go to original source... Go to PubMed...
  29. Praus L., Száková J., Steiner O., Goessler W. (2019): Rapeseed (Brassica napus L.) biofortification with selenium: how do sulphate and phosphate influence the efficiency of selenate application into soil? Archives of Agronomy and Soil Science, 65: 2059-2072. Go to original source...
  30. Rodrigo S.M., Santamaría O., López-Bellido F.J., Poblaciones M.J. (2013): Agronomic selenium (Se) biofortification of two-rowed barley under Mediterranean conditions. Plant, Soil and Environment, 59: 115-120. Go to original source...
  31. Schiavon M., Pilon-Smits E.A.H. (2017): The fascinating facets of plant selenium accumulation-biochemistry, physiology, evolution and ecology. New Phytologist, 213: 1582-1596. Go to original source... Go to PubMed...
  32. Šindelářová K., Száková J., Tremlová J., Mestek O., Praus L., Kaňa A., Najmanová J., Tlustoš P. (2015): The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation. Food Additives and Contaminants: Part A, 32: 2027-2038. Go to original source... Go to PubMed...
  33. Tlustoš P., Mrština T., Praus L., Kaplan P., Procházka J., Hlaváček F., Száková J. (2024): Foliar application of selenium on agricultural crops. In: Vaněk V., Pavlíková D., Tlustoš P. (eds.): Reasonable Use of Fertilizers Dedicated to Micronutrients in Soil-Plant-Fodder-Food System. Prague, Powerprint, 47-55. ISBN978-3-12732-320-7
  34. Tobiasz A., Walas S., Filek M., Mrowiec H., Samsel K., Sieprawska A., Hartikainen H. (2014): Effect of selenium on distribution of macro- and micro-elements to different tissues during wheat ontogeny. Biologia Plantarum, 58: 370-374. Go to original source...
  35. Turakainen M., Hartikainen H., Seppänen M. (2004): Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. Journal of Agricultural and Food Chemistry, 52: 5378-5382. Go to original source... Go to PubMed...
  36. Wang J., Wang Z., Mao H., Zhao H., Huang D. (2013): Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Field Crops Research, 150: 83-90. Go to original source...
  37. Xue M., Wang D., Zhou F., Du Z., Zhai H., Wang M., Dinh Q.T., Tran T.A.T., Li H., Yan Y., Liang D. (2020): Effects of selenium combined with zinc amendment on zinc fractions and bioavailability in calcareous soil. Ecotoxicology and Environmental Safety, 190: 110082. Go to original source... Go to PubMed...
  38. Yan G., Wu L., Hou M., Jia S., Jiang L., Zhang D. (2024): Effects of selenium application on wheat yield and grain selenium content: a global meta-analysis. Field Crops Research, 307: 109266. Go to original source...
  39. Yeasmin M., Lamb D., Choppala G., Rahman M.M. (2022): Impact of sulfur on biofortification and speciation of selenium in wheat grain grown in selenium-deficient soils. Journal of Soil Science and Plant Nutrition, 22: 3243-3253. Go to original source...
  40. Zapletalová A., Vician T., Ernst D., Černý I., Vicianová M., Bušo R. (2024): Formation of quantitative and qualitative parameters of sunflower (Helianthus annuus L.) after application of stimulating substances. Journal of Central European Agriculture, 25: 675-685 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.