Plant Soil Environ., 2025, 71(12):905-922 | DOI: 10.17221/406/2025-PSE

Genotypic variation in physiological, biochemical, and transcriptional responses to drought stress in spring barley at an early growth stageOriginal Paper

Šarlota Kaňuková ORCID...1,2, Marcela Gubišová ORCID...1, Martina Hudcovicová ORCID...1, Jozef Gubiš ORCID...1, Katarína Ondreičková ORCID...1
1 National Agricultural and Food Centre, Research Institute of Plant Production, Piešťany, Slovak Republic
2 University of Ss. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Biotechnology, Trnava, Slovak Republic

Drought is a major abiotic stress limiting barley (Hordeum vulgare L.) productivity. We evaluated 17 spring barley genotypes at the early leaf development stage under controlled laboratory conditions with optimal and drought treatments, integrating physiological, biochemical, and molecular traits. Drought reduced relative water content (–1.3% to –3.2%), plant height (–14.7% to –29.6%), and dry biomass (–2.3% to –24.9%), while inducing strong proline accumulation (+23.6% to +454%) and pigment loss (chlorophyll a –10.1% to –79.5%; carotenoids –6.2% to –70.9%). Principal component and discriminant analyses identified plant height and chlorophyll a as the most reliable discriminators, whereas relative water content was less predictive of the species. Multivariate stratification separated tolerant (Argument, Exalis, Slaven, Malz, Valis), intermediate (Laudis 550, Tango, Kompakt, LG Belcanto, SK Levitus), and sensitive (Kangoo, LG Tosca, LG Flamenco, Karmel, Bojos, Nitran, Tadmor) groups of genotypes. Gene expression profiling of 12 genotypes revealed a modest induction of HvABF2 (1.77-fold), moderate upregulation of HvSOD1 (1.82-fold) and HvAPX1 (2.28-fold), and the strongest response in HvP5CS (3.29-fold), which did not consistently correlate with tolerance. Tolerant genotypes combined growth stability, pigment retention, and moderate osmotic adjustment, whereas sensitive genotypes relied on excessive proline accumulation, resulting in severe pigment and growth penalties. Overall, drought tolerance in barley at the early growth stage emerged from the coordinated regulation of growth, photoprotection, and stress-gene activation, providing a foundation that can guide the selection of genotypes for subsequent validation under field conditions and future breeding programmes.

Keywords: abscisic acid signalling; antioxidant enzymes; drought stress genes; high-stress environment; water deficit; osmoprotectant; pigment stability

Received: September 17, 2025; Revised: December 1, 2025; Accepted: December 2, 2025; Prepublished online: December 17, 2025; Published: December 18, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kaňuková Š, Gubišová M, Hudcovicová M, Gubiš J, Ondreičková K. Genotypic variation in physiological, biochemical, and transcriptional responses to drought stress in spring barley at an early growth stage. Plant Soil Environ. 2025;71(12):905-922. doi: 10.17221/406/2025-PSE.
Download citation

References

  1. Abu-Romman S., Shatnawi M. (2011): Isolation and expression analysis of chloroplastic copper/zinc superoxide dismutase gene in barley. South African Journal of Botany, 77: 328-334. Go to original source...
  2. Alexander R.D., Wendelboe-Nelson C., Morris P.C. (2019): The barley transcription factor HvMYB1 is a positive regulator of drought tolerance. Plant Physiology and Biochemistry, 142: 246-253. Go to original source... Go to PubMed...
  3. Al-Sayaydeh R., Ayad J., Harwood W., Al-Abdallat A.M. (2024): Stress-inducible expression of HVABF2 transcription factor improves water deficit tolerance in transgenic barley plants. Plants, 13: 3113. Go to original source... Go to PubMed...
  4. Bandurska H., Niedziela J., Pietrowska-Borek M., Nuc K., Chadzinikolau T., Radzikowska D. (2017): Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiology and Biochemistry, 118: 427-437. Go to original source... Go to PubMed...
  5. Bandurska H. (2022): Drought stress responses: coping strategy and resistance. Plants, 11: 922. Go to original source... Go to PubMed...
  6. Bates L.S., Waldren R.P., Teare I.D. (1973): Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207. Go to original source...
  7. Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T. (2009): The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55: 611-622. Go to original source... Go to PubMed...
  8. Cai K., Chen X., Han Z., Wu X., Zhang S., Li Q., Nazir M.M., Zhang G., Zeng F. (2020): Screening of worldwide barley collection for drought tolerance: the assessment of various physiological measures as the selection criteria. Frontiers in Plant Science, 11: 01159. Go to original source... Go to PubMed...
  9. Collin A., Matkowski H., Sybilska E., Biantari A., Król O., Daszkowska-Golec A. (2025): ABA-induced alternative splicing drives transcriptomic reprogramming for drought tolerance in barley. BMC Plant Biology, 25: 445. Go to original source... Go to PubMed...
  10. Deng G., Liang J., Xu D., Long H., Pan Z., Yu M. (2013): The relationship between proline content, the expression level of P5CS (Δ1-pyrroline-5-carboxylate synthetase), and drought tolerance in Tibetan hulless barley (Hordeum vulgare var. nudum). Russian Journal of Plant Physiology, 60: 693-700. Go to original source...
  11. Elakhdar A., Solanki S., Kubo T., Abed A., Elakhdar I., Khedr R., Hamwieh A., Capo-Chichi L.J., Abdelsattar M., Franckowiak J.D., Qualset C.O. (2022): Barley with improved drought tolerance: challenges and perspectives. Environmental and Experimental Botany, 201: 104965. Go to original source...
  12. Ferdous J., Li Y., Reid N., Langridge P., Shi B., Tricker P.J. (2015): Identification of reference genes for quantitative expression analysis of microRNAs and mRNAs in barley under various stress conditions. PLoS One, 10: e0118503. Go to original source... Go to PubMed...
  13. Ferioun M., Srhiouar N., Bouhraoua S., Ghachtouli N.E., Louahlia S. (2023): Physiological and biochemical changes in Moroccan barley (Hordeum vulgare L.) cultivars submitted to drought stress. Heliyon, 9: e13643. Go to original source... Go to PubMed...
  14. Frimpong F., Anokye M., Windt C.W., Naz A.A., Frei M., Van Dusschoten D., Fiorani F. (2021): Proline-mediated drought tolerance in the barley (Hordeum vulgare L.) isogenic line is associated with lateral root growth at the early seedling stage. Plants, 10: 2177. Go to original source... Go to PubMed...
  15. George A., Murali R., Jolly G.E., Jincy M. (2025): Drought stress on barley crop: a review. Agricultural Reviews, R-2715: 1-10. Go to original source...
  16. Grando S., Gomez Macpherson H. (eds.) (2005): Food barley: importance, uses and local knowledge. In: Proceedings of the International Workshop on Food Barley Improvement, 14-17 January 2002, Hammamet, Tunisia. Aleppo, Syria: International Center for Agricultural Research in the Dry Areas (ICARDA). ISBN: 92-9127-173-0
  17. Hammer O., Harper D.A.T., Ryan P.D. (2001): PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: 1-9.
  18. Kishor P.B.K., Rajesh K., Reddy P.S., Seiler C., Sreenivasulu N. (2014): Drought stress tolerance mechanisms in barley and its relevance to cereals. In: Kumlehn J., Stein N. (eds.): Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry. Vol. 69. Springer, Berlin, Heidelberg. Go to original source...
  19. Langridge P. (2018): Economic and academic importance of barley. In: Stein N., Muehlbauer G. (eds): The Barley Genome. Compendi-um of Plant Genomes. Cham, Springer. Go to original source...
  20. Lichtenthaler H.K., Wellburn A.R. (1983): Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591-592. Go to original source...
  21. Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25: 402-408. Go to original source... Go to PubMed...
  22. Mauri M., Elli T., Caviglia G., Uboldi G., Azzi M. (2017): RAWGraphs: A Visualisation Platform to Create Open Outputs. In: Pro-ceedings of the 12th Biannual Conference on Italian SIGCHI. Chapter, 28:1-28:5. New York, USA. Go to original source...
  23. Nakashima K., Yamaguchi-Shinozaki K., Shinozaki K. (2025): Transcriptional gene network involved in drought stress response: application for crop breeding in the context of climate change. Philosophical Transactions of the Royal Society B Biological Sciences, 380: 20240236. Go to original source... Go to PubMed...
  24. Newton A.C., Flavell A.J., George T.S., Leat P., Mullholland B., Ramsay L., Revoredo-Giha C., Russell J., Steffenson B.J., Swanston J.S., Thomas W.T.B., Waugh R., White P.J., Bingham I.J. (2011): Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Security, 3: 141-178. Go to original source...
  25. Pang Z., Lu Y., Zhou G., Hui F., Xu L., Viau C., Spigelman A.F., MacDonald P.E., Wishart D.S., Li S., Xia J. (2024): MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Research, 52: W398-W406. Go to original source... Go to PubMed...
  26. Pfaffl M.W. (2001): A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29: e45. Go to original source... Go to PubMed...
  27. Sade N., Galkin E., Moshelion M. (2015): Measuring Arabidopsis, tomato and barley leaf relative water content (RWC). BIO-ROTOCOL, 5: 1451. Go to original source...
  28. Sallam A., Alqudah A.M., Dawood M.F.A., Baenziger P.S., Börner A. (2019): Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. International Journal of Molecular Sciences, 20: 3137. Go to original source... Go to PubMed...
  29. Samanta S., Seth C.S., Roychoudhury A. (2024): The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants. Plant Physiology and Biochemistry, 206: 108259. Go to original source... Go to PubMed...
  30. Schmittgen T.D., Livak K.J. (2008): Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3: 1101-1108. Go to original source... Go to PubMed...
  31. Shi W., Muramoto Y., Ueda A., Takabe T. (2001): Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced ther-motolerance by overexpressing in Arabidopsis thaliana. Gene, 273: 23-27. Go to original source... Go to PubMed...
  32. Szabados L., Savouré A. (2009): Proline: a multifunctional amino acid. Trends in Plant Science, 15: 89-97. Go to original source... Go to PubMed...
  33. Töpfer V., Matros A., Keilwagen J., Snowdon R.J., Stahl A., Wehner G. (2025): Early drought stress triggers contrasting trait responses in spring barley. Field Crops Research, 333: 110102. Go to original source...
  34. Xiong J., Chen D., Chen Y., Wu D., Zhang G. (2023): Genome-wide association mapping and transcriptomic analysis reveal key drought-responding genes in barley seedlings. Current Plant Biology, 33: 100277. Go to original source...
  35. Yoshida T., Fujita Y., Sayama H., Kidokoro S., Maruyama K., Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. (2009): AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signalling involved in drought stress tolerance and require ABA for full activation. The Plant Journal, 61: 672-685. Go to original source... Go to PubMed...
  36. Zadoks J.C., Chang T.T., Konzak C.F. (1974): A decimal code for the growth stages of cereals. Weed Research, 14: 415-421. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.