Plant Soil Environ., 2026, 72(1):66-75 | DOI: 10.17221/539/2025-PSE

Foliar silicon modulates structural and biochemical responses of buckwheat to water deficitOriginal Paper

Jiri Krucky ORCID...1, Vaclav Hejnak ORCID...1, Pavla Vachova ORCID...1, Jana Ceska1, Jan Kubes ORCID...1, Milan Skalický ORCID...1
1 Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic

Drought is a major abiotic stressor that limits crop growth and is often associated with oxidative stress. We evaluated whether foliar silicon (Si) application affects primary root anatomy, plant height, and phenolic metabolism in three common buckwheat (Fagopyrum esculentum) cultivars (La Harpe, Panda, and Smuga) exposed to water deficit. Plants were grown under controlled conditions in four treatments: control; drought; control + Si, and drought + Si. Qualitative anatomical assessment revealed that Si promoted more advanced development of the primary root central cylinder, most notably in La Harpe under drought conditions, where a continuous ring of secondary xylem and a well-developed pith were observed. Drought significantly reduced plant height in all cultivars; Si partially alleviated this reduction in La Harpe and Panda, but not in Smuga. Drought generally increased total phenolic content (TPC) and phenolic acid content (PAC) in both leaves and roots, and Si further enhanced these responses, with the highest values under drought + Si. Overall, the results indicate cultivar-dependent effectiveness of foliar silicon (Si) and suggest that Si contributes to coordinated structural and biochemical adjustments under water deficit conditions. To assess the transferability of these responses, further verification across a broader range of genotypes and under different intensities and durations of drought is warranted.

Keywords: xylem development; growth inhibition; phenolic compounds; water stress; cultivar specificity

Received: December 1, 2025; Revised: January 11, 2026; Accepted: January 13, 2026; Prepublished online: January 27, 2026; Published: January 29, 2026  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Krucky J, Hejnak V, Vachova P, Ceska J, Kubes J, Skalický M. Foliar silicon modulates structural and biochemical responses of buckwheat to water deficit. Plant Soil Environ. 2026;72(1):66-75. doi: 10.17221/539/2025-PSE.
Download citation

References

  1. Ahmad A., Hassim M.F.N. (2024): Effects of silica nanoparticles on morpho-histological and antioxidant activ-ities of rice seedlings under drought stress. South African Journal of Botany, 168: 497-508. Go to original source...
  2. Ahmad W., Waraich E.A., Haider A., Mahmood N., Ramzan T., Alamri S., Siddiqui M.H., Akhtar M.S. (2024): Silicon-mediated improvement in drought and salinity stress tolerance of black gram (Vigna mungo L.) by modulating growth, physiological, biochemical, and root attributes. ACS Omega, 9: 37231-37242. Go to original source... Go to PubMed...
  3. Ahsan M., Valipour M., Nawaz F., Raheel M., Abbas H.T., Sajid M., Manan A., Kanwal S., Mahmoud E.A., Casi-ni R., Elansary H.O., Radicetti E., Zulfiqar H. (2023): Evaluation of silicon supplementation for drought stress under water-deficit conditions: an application of sustainable agriculture. Agronomy, 13: 599. Go to original source...
  4. Akhtar N., Ilyas N. (2022): Role of nanosilica to boost the activities of metabolites in Triticum aestivum facing drought stress. Plant and Soil, 477: 99-115. Go to original source...
  5. Ali M.F., Ahmed M., Mukhtar L., Ali N., Qadir G., Hayat R., Ahmad S. (2025): Foliar application of silicon allevi-ates drought stress in chickpea (Cicer arietinum L.) by improving growth, photosynthetic and antioxidant me-tabolism. Journal of Soil Science and Plant Nutrition, 25: 6678-6693. Go to original source...
  6. Antala M., Kovar M., Sporinová L., Filacek A., Juszczak R., Zivcak M., Shomali A., Prasad R., Brestic M., Rasto-gi A. (2025): High-throughput phenotyping of buckwheat (Fagopyrum esculentum Moench.) genotypes under water stress: exploring drought resistance for sustainable agriculture. BMC Plant Biology, 25: 444. Go to original source... Go to PubMed...
  7. Aubert L., Konrádová D., Barris S., Quinet M. (2021): Different drought resistance mechanisms between two buckwheat species, Fagopyrum esculentum and Fagopyrum tataricum. Physiologia Plantarum, 172: 577-586. Go to original source... Go to PubMed...
  8. Bashir S.S., Hussain A., Hussain S.J., Wani O.A., Nabi S.Z., Dar N.A., Baloch F.S., Mansoor S. (2021): Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms. Biotech-nology and Biotechnological Equipment, 35: 1912-1925. Go to original source...
  9. Carneiro-Carvalho A., Aires A., Anjos R., Martins L., Pinto T., Peixoto F., Gomes-Laranjo J. (2020): The role of silicon fertilization in the synthesis of phenolic compounds on chestnut plants infected with P. cinnamomi and C. parasitica. Journal of Plant Diseases and Protection, 127: 211-227. Go to original source...
  10. Dar F.A., Tahir I., Hakeem K.R., Rehman R.U. (2022): Silicon application enhances the photosynthetic pig-ments and phenolic/flavonoid content by modulating the phenylpropanoid pathway in common buckwheat under aluminium stress. Silicon, 14: 323-334. Go to original source...
  11. Desoky E.-S.M., Mansour E., El-Sobky E.-S.E.A., Abdul-Hamid M.I., Taha T.F., Elakkad H.A., Arnaout S.M.A.I., Eid R.S.M., El-Tarabily K.A., Yasin M.A.T. (2021): Physio-biochemical and agronomic responses of faba beans to exogenously applied nano-silicon under drought stress conditions. Frontiers in Plant Science, 12: 637783. Go to original source... Go to PubMed...
  12. Germ M., Golob A., Mikuą K.V., Likar M., Mravlje J., Pongrac P., Čermelj A.M., Park C.H., Park M.O., Kwiatkow-ski J., Regvar M. (2025): The potential of Si and Se as biostimulants to enhance resistance to climatic condi-tions and improve yields in common and Tartary buckwheat. Fagopyrum, 42: 19-28. Go to original source...
  13. Gharibi S., Tabatabaei B.E.S., Saeidi G., Talebi M., Matkowski A. (2019): The effect of drought stress on poly-phenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. Phytochemistry, 162: 90-98. Go to original source... Go to PubMed...
  14. Hornyák M., Płażek A., Kopeć P., Dziurka M., Pastuszak J., Szczerba A., Hura T. (2020): Photosynthetic activity of common buckwheat (Fagopyrum esculentum Moench) exposed to thermal stress. Photosynthetica, 58: 45-53. Go to original source...
  15. Hossain M.S., Li J., Wang C., Monshi F.I., Tabassum R., Islam M.A., Faruquee M., Muktadir M.A., Mia M.S., Islam A.K.M.M., Hasan A.K., Sikdar A., Feng B. (2024): Enhanced antioxidant activity and secondary metabo-lite production in tartary buckwheat under polyethylene glycol (PEG)-induced drought stress during germina-tion. Agronomy, 14: 619. Go to original source...
  16. Howladar S.M. (2014): A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicology and Environmental Safety, 100: 69-75. Go to original source... Go to PubMed...
  17. Hussain S., Hussain S., Qadir T., Khaliq A., Ashraf U., Parveen A., Saqib M., Rafiq M. (2019): Drought stress in plants: an overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Sci-ence Today, 6: 389-402. Go to original source...
  18. Cheraghi M., Motesharezadeh B., Mousavi S.M., Basirat M., Alikhani H.A., Zarebanadkouki M. (2024): Appli-cation of silicon improves rhizosheath formation, morpho-physiological and biochemical responses of wheat under drought stress. Plant and Soil, 503: 263-281. Go to original source...
  19. Junker A., Muraya M.M., Weigelt-Fischer K., Arana-Ceballos F., Klukas C., Melchinger A.E., Meyer R.C., Riewe D., Altmann T. (2015): Optimizing experimental procedures for quantitative evaluation of crop plant perfor-mance in high throughput phenotyping systems. Frontiers in Plant Science, 5: 770. Go to original source... Go to PubMed...
  20. Krucky J., Hejnak V., Vachova P., Gupta A., Kubes J., Popov M., Skalicky M. (2025): Silicon application enhanc-es drought resilience in buckwheat: a comparative study of three varieties. Frontiers in Plant Science, 16: 1635709. Go to original source... Go to PubMed...
  21. Lux A., Lukačová Z., Vaculík M., ©vubová R., Kohanová J., Soukup M., Martinka M., Bokor B. (2020): Silicifica-tion of root tissues. Plants, 9: 111. Go to original source... Go to PubMed...
  22. Mahmoud A.W.M., Rashad H.M., Esmail S.E.A., Alsamadany H., Abdeldaym E.A. (2023): Application of silicon, zinc, and zeolite nanoparticles - a tool to enhance drought stress tolerance in coriander plants for better growth performance and productivity. Plants, 12: 2838. Go to original source... Go to PubMed...
  23. Manivannan A., Soundararajan P., Jeong B.R. (2023): Editorial: Silicon: A "Quasi-Essential" element's role in plant physiology and development. Frontiers in Plant Science, 14: 1157185. Go to original source... Go to PubMed...
  24. Mastalerczuk G., Borawska-Jarmułowicz B., Sujkowska-Rybkowska M., Bederska-Błaszczyk M., Borucki W., Dąbrowski P. (2025): Silicon mitigates the adverse effects of drought on Lolium perenne physiological, mor-phometric and anatomical characters. PeerJ - the Journal of Life and Environmental Sciences, 13: e18944. Go to original source... Go to PubMed...
  25. Morshedloo M.R., Saeidi S., Zahedi S.M., Jahantab E., Ghorbanpour M. (2025): Foliar-applied silicon and nano-silicon alter the product quality and defense system in ginger mint (Mentha gracilis R.Br.) under drought stress by inducing essential oil accumulation and antioxidant activity. Journal of Soil Science and Plant Nutri-tion, 25: 1913-1926. Go to original source...
  26. Oksana S., Marek K., Marian B., Marek Z. (2023): Cultivar-dependent and drought-induced modulation of secondary metabolites, adaptative defense in Fagopyrum esculentum L. Physiology and Molecular Biology of Plants, 29: 1605-1618. Go to original source... Go to PubMed...
  27. R Core Team (2023): R: A language and environment for statistical computing (Vienna: R Foundation for Sta-tistical Computing). Available at: https://www.r-project.org (accessed 7. 7. 2025)
  28. Sabir A., Waraich E.A., Ahmad M., Hussain S., Asghar H.N., Haider A., Ahmad Z., Bibi S. (2024): Silicon-mediated improvement in maize (Zea mays L.) resilience: unrevealing morpho-physiological, biochemical, and root attributes against cadmium and drought stress. Silicon, 16: 3095-3109. Go to original source...
  29. Saja-Garbarz D., Libik-Konieczny M., Janowiak F. (2024): Silicon improves root functioning and water man-agement as well as alleviates oxidative stress in oilseed rape under drought conditions. Frontiers in Plant Science, 15: 1359747. Go to original source... Go to PubMed...
  30. Sattar A., Sher A., Ijaz M., Ul-Allah S., Hussain S., Rasheed U., Hussain J., Al-Qahtani S.M., Al-Harbi N.A., Mahmoud S.F., Ibrahim M.F.M. (2023): Modulation of antioxidant defense mechanisms and morpho-physiological attributes of wheat through exogenous application of silicon and melatonin under water deficit conditions. Sustainability, 15: 7426. Go to original source...
  31. Singleton V.L., Rossi J.A. (1965): Colourimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Oenology and Viticulture, 16: 144-158. Go to original source...
  32. Szaufer-Hajdrych M. (2004): Phenolic acids in leaves of species of the Aquilegia L. genus. Herba Polonica, 50: 50-54.
  33. Thorne S.J., Hartley S.E., Maathuis F.J.M. (2021): The effect of silicon on osmotic and drought stress tolerance in wheat landraces. Plants, 10: 814. Go to original source... Go to PubMed...
  34. Vaculík M., Landberg T., Greger M., Luxová M., Stoláriková M., Lux A. (2012): Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Annals of Botany, 110: 433-443. Go to original source... Go to PubMed...
  35. Wang M., Wang R., Mur L.A.J., Ruan J., Shen Q., Guo S. (2021): Functions of silicon in plant drought stress responses. Horticulture Research, 8: 254. Go to original source... Go to PubMed...
  36. Zahedi S.M., Hosseini M.S., Hoveizeh N.F., Kadkhodaei S., Vaculík M. (2023): Comparative morphological, physiological and molecular analyses of drought-stressed strawberry plants affected by SiO2 and SiO2-NPs foliar spray. Scientia Horticulturae, 309: 111686. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.