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A large set of data from the conventional soil 
survey carried out in the past on one hand, and 
existence of modern technologies for data process-
ing on the other hand, require finding ways of ex-
ploitation of these relatively easily available data. 
Different aims and methods of conventional soil 
survey and geostatistics can cause problems for the 
exploitation of these data. This paper is focused on 
outlining the major problems that arise, and finding 
an appropriate solution to overcome the gaps.

Conventional soil survey

A conventional soil survey was carried out in 
the former Czechoslovakia in the 1960’s. This soil 
survey covered all agricultural land. The urban 
and forest land was excluded. A sampling scheme 
of soil pits was generated to describe all soil clas-
sification units. The landscape was divided into 
three categories according to geomorphology and 
lithology (Němeček et al. 1967). These three cat-
egories differ in the density of soil pits. The first 
category represents the most homogenous land-
scape – flat or slightly hilly areas with relatively 
homogenous soil-lithogenic properties. The second 
category represents moderately hilly landscape, 
areas influenced by water erosion, areas with 
heterogeneous lithography and mountains. The 

third category includes river alluvia, areas with 
extremely heterogeneous soil-lithogenic conditions 
and soils affected by salinity. The density of soil 
pits in given categories is in Table 1.

There were three types of profile pits according 
to the set of determined characteristics (Němeček 
et al. 1967). The base profile pits characterize lower 
map units. Samples were taken only from topsoil 
and subsurface layer. Clay content and pH were 
determined. The selective profile pits describe soil-
mapping units given by genetic and expressive 
lithogenic features. The samples were collected 
from all horizons in the profile. Clay content, pH, 
CEC, base saturation, organic carbon content and 
some other properties were measured. The special 
profile pits provide a wide number of chemical and 
physical soil properties (e.g. mineralogy).

The locations of the base profiles were determined 
so that they described typical parts of relief and all 
typical soil taxonomy units. The location of selec-
tive profiles was chosen so that they represented 
typical classification units and their lithogenic 
variants. In both cases, if the limit of the soil pits 
(according to Table 1) was not reached, the rest 
of soil pits was distributed to cover the area as 
homogenously as possible.

This sampling design represents a typical con-
ventional soil survey, where the soil pits are not 
randomly distributed over the area. Surveyors select 
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the distribution of sampling sites subjectively. Such 
designs are purposive and non-random, and do 
not provide statistical estimates (Hengl 2003). The 
problems arising from it are discussed later.

Geostatistics

Geostatistics is a technology for estimating the 
local values of properties that vary in space (Oliver 
and Webster 1991). The theory is based upon the 
concept of a random variable, which expresses 
a continuous variable depending on a location 
(Stein et al. 1998). It is expected that observations 
close together in space will be more alike than 
those further apart (Lloyd and Atkinson 1998). 

Variogram (also known as semivariogram) is the 
most commonly used measure of spatial variation 
in geostatistics. The semivariance, denoted by γ, 
at a given separation is half the expected square 
difference between values at that separation:

γ(h) = 0.5E [{Z(x) – Z(x + h)}2]

where: Z(x) and Z(x + h) are the values of Z at any 
two places, x and x + h, separated by h, a vector 
having both distance and direction (lag) (Oliver 
and Webster 1991).

The shape of a variogram is characterized by 
three parameters – nugget, range, and sill. Nugget 
represents the part of the variability that is not 
spatially dependent. The maximum semivariance 
value, where the semivariance does not increase 
any further, is called the sill. The distance where 
the sill is reached is the range. The variogram is 
used for interpolation (most widely used is ordi-
nary kriging) and for measuring the confidence of 
the estimates (van Groenigen 2000).

There are several sampling strategies that are 
used in geostatistics. Regular grids, both triangular 
and rectangular, are presented by many authors 
(van Groenigen et al. 2000, Webster and Oliver 
2000, Frogbrook et al. 2002) as one of the possi-
bilities. A nested or random sampling scheme is 
another way of obtaining data for geostatistical 

Table 1. Density of soil profile pits for different geomorpho-
logic-lithographic categories

Landscape
category

Number of hectares
per one base

profile pit 

Number of hectares
per one selective

profile pit

I. 18 180

II. 12 120

III. 7 70

Figure 1. Soil map of the area of interest (at the resolution of 1:50 000) with soil pits localization
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methods (Webster 1977, Oliver and Webster 1991, 
Wollenhaupt et al. 1997); van Groenigen (2000) 
presents methods that are used for optimization of 
sampling grids. Different criteria for optimization 
of sampling scheme are chosen for decreasing the 
uncertainty of the prediction of spatial dependence 
values.

MATERIAL AND METHODS

Data and the study site

The study area is located in the district of Tábor 
in Southern Bohemia (Figure 1). The area of interest 
is represented by a rectangle section of 543 square 
kilometers. Cambisols are the prevailing soil clas-
sification unit (45.1%). Stagnosols cover 26.2%, 
Luvisols 15.0%, Gleysols 7.5%, and Fluvisols 
3.2%. Geology of the area is formed mainly by 
granites, gneisses, loesses and alluvial sediments. 
The elevation of the area ranges from 410 to 670 m 
above sea level.

In this section, 257 selected profiles were located 
and were used for this project. Clay content and pH 
in subsurface horizon were used as representative 
spatial variables.

Methods

The variability of clay content and soil pH was 
described by experimental variograms. The lag 

classes were set up to obtain in each lag class 
a sufficient amount of pairs of the values to de-
scribe the variability. The variograms were mod-
eled by weighted least squares approximation. 
Geostatistical analysis of source data was done 
using GS+ software (Robertson 2000).

First the original untreated data were used. Then 
the original data were treated to overcome the prob-
lems that arise from different aims of conventional 
soil survey and geostatistical approaches. The ex-
treme values of semivariability were examined and 
processed. This examination was focused on pits 
from places with extreme lithogenic conditions and 
non-zonal soils. Processing of the data was based 
on different ways of excluding extreme data.

RESULTS AND DISCUSSION

Variograms based on the original data, both 
for clay content and pH, showed a big portion 
of nugget variability (Figure 2). The high nugget 
variability would indicate that there is no spatial 
dependence of the soil properties or the spatial 
dependence is very low. Detailed examination of 
the variogram show that the high nugget vari-
ability in the lag classes representing the shortest 
distances is caused by a few extremes. These few 
outlying values radically influence the shape of the 
variogram. Figure 3 presents the variance cloud for 
the first three lag classes of clay content. Extreme 
values (outliers) are present in lag classes for bigger 
distances as well (Table 2). However, the proportion 
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Figure 2. Variogram from original untreated data for clay content and pH

Table 2. Occurrence of outlying values of variability within the lag classes (clay content)

Separation distance (m) 500 1000 1500 2000 2500 3000 3500 4000

Number of outlying values 4 5 5 6 8 7 9 8

Number of pairs 47 116 222 304 350 408 490 559
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of these extreme values to other values belonging 
to given class is much lower. The ratio between 
outlying and normal values within lag classes is 
presented in Figure 4. It is obvious that the first 
two lag classes in variogram for clay content are 
the most affected. The expectation based on the 
spatial random variable theory would be that the 
variability in the first two lag classes would be the 
lowest. In fact the opposite is true.

The relatively high proportion of extreme val-
ues in the first three lag classes is caused by two 
factors: 1) the amount of pairs, which represent 
the variability, is relatively low. The average 
variability within the lag class can be therefore 
easily influenced by a few extremes. 2) The con-
figuration of sampling scheme of the data is not 

random. The original sampling scheme described 
above provides closely located extreme values. In 
homogenous areas, the sampling scheme is sparse 
and no closely located values that would show 
low variability are available. On the other hand, 
in the areas with high heterogeneity, points lie 
closer to each other. The reason for this is that 
they describe areas that strongly differ. One of 
the values of such closely lying pairs of values 
represents local lithogenic or landform extremes 
on relatively small areas. The second example of 
these extremes is non-zonal soils like Fluvisols 
and Gleysols. These soils represent narrow strips 
around small streams. This influence of extremes 
is more important at shorter distances.

When the medium to small-scale variability of the 
soil properties is to be described, it is reasonable 
to exclude values that represent these small areas 
with lithogenic or landform extremes. Describing 
the properties of non-zonal soils by geostatistics is 
also very problematic. With the data available for 
this study, it is not possible. Because of the shape 
and extent of these soils, the data representing 
them can be excluded as well.

Two approaches of excluding the extremes can 
be applied. The first approach is to exclude all 
data representing soil units that are a source of 
extreme variability. This can be done when these 
soil units represent only areas with small extent, 
which would be not mapped anyway. The decision 
of what soil units can be excluded or not is based 
on individual decision. This decision must take 
into consideration the aim of the project, the scale 
of the resulting materials and so on. The second 
approach is to find the outlying values using the 
variance clouds for the individual lag classes of 
the variogram and exclude these extreme values. 
Which of the values from the pair representing the 
variability would be excluded should be done ac-
cording to what soil units or subunits it belongs to. 
Both these approaches were tested. Simple exclu-
sion of data representing soil units with extreme 
features (46 pits – 9 Fluvisols and 37 Gleysols) did 
not bring almost any improvement (Figure 5). The 
total variability decreased. The shape of the vario-

Figure 4. Ratio between outlying values and other values within 
the lag classes – clay content
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gram was the same even if there was a decrease of 
semivariability in the first two lag classes.

Exclusion of outlying values provided much 
better results. For this purpose, the variance cor-
responding to one half of the maximum difference 
between a pair of values in the dataset was used 
as a limit for outlier distinguishing. In the case of 
clay content, maximum value was 56%; minimum 
value was 0%. One half of the difference was 28 
and the limit variance calculated as the square of 
the difference (Robertson 2000) was thus 784. All 
variances exceeding this value in each class were 
considered as outliers (Figure 3). The outlying val-
ues from the first three lag classes were excluded 
(4 from first class and 5 from second and third 
class), since the influence in these classes is the 
most significant due to a small number of values 
in these classes. For the second class, 5 removed 
outlying values in the original dataset appeared 
as 6 outliers in the variance cloud, because one 
of the values provided high variances with two 
other values in this lag class. Even when only 
a small number of data was excluded (Table 2), 

the shape of variogram changed apparently. The 
nugget decreased from pure nugget to a 50% of 
the total variability for clay content and from 81 to 
23% for pH (Figure 6).

The results showed how easily the semivariance 
could be influenced, when lag classes contain rela-
tively small number of data. The exploitation of the 
base profile data could be a possible way how to avoid 
these problems. Base profiles can provide a large set 
of data that are closely located to each other and that 
suitably describe the semivariance.

This study presents that the exploitation of data 
originating from conventional soil survey is possible 
but the initial processing of the data is a necessary 
step for further exploitation of these data.
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ABSTRAKT

Zpracování dat tradičního půdního průzkumu geostatistickými metodami

Odlišné cíle a postupy tradičního půdního průzkumu a geostatistických metod způsobují problémy s využitím těchto 
dat. Tento příspěvek je zaměřen na možnosti odstranění problémů spojených s odlišným přístupem tradičního půd-
ního průzkumu a geostatistických metod k odběru vzorků. Byla popsána prostorová variabilita obsahu jílu a pH jak 
pro původní neupravená data Komplexního průzkumu zemědělských půd, tak i pro data upravená. Původní data 
vykázala vysokou variabilitu obou zkoumaných vlastností i na malé vzdálenosti. Tato variabilita byla způsobena 
výskytem extrémních hodnot (i když malého množství). Odstranění dat reprezentujících půdní jednotky, způsobující 
tuto velkou variabilitu (azonální půdy niv a lokální extrémy dané morfologií terénu a složením substrátu), nevedlo 
k výraznému zlepšení. Odstranění extrémních hodnot semivariance na základě podrobné analýzy dat přispělo k pod-
statně lepším výsledkům. Podíl semivariance, která zdánlivě není prostorově závislá, klesl u obsahu jílu ze 100 % 
na polovinu a u pH z 81 na 23 %. Výsledky ukazují, že využití dat tradičního půdního průzkumu geostatistickými 
metodami je možné, ale předběžné zpracování těchto dat je nezbytným krokem pro jejich správné použití.

Klíčová slova: půdní průzkum; geostatistika; zpracování dat; prostorová variabilita
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