
206 PLANT SOIL ENVIRON., 51, 2005 (5): 206–212 PLANT SOIL ENVIRON., 51, 2005 (5): 206–212 207

Despite its tropical origin, maize (Zea mays L.) 
has become a widely cultivated crop in temperate 
regions. Low spring temperatures can seriously 
damage growth and ontogeny of young maize 
plants due to the inhibition of their photosynthe-
sis (Nie and Baker 1991, Nie et al. 1992, Dolstra 
et al. 1994, Massacci et al. 1995, Haldimann et al. 
1996). Maize as a biological species includes a large 
number of genotypes which differ in their tolerance 
to low temperatures (chilling or cold) (Dolstra et 
al. 1994, Massacci et al. 1995, Fracheboud et al. 
1999). Differences in photosynthetic characteristics 
are particularly important because the yield of the 
photosynthetic processes is used for growth dur-
ing plant ontogeny.

A great deal of work has been done in investigat-
ing key photosynthetic characteristics which are 
responsible for chilling tolerance in young maize 
plants, but little is still known about the impact of 
chilling on photosynthetic apparatus in the whole 
range of irradiance. Fluorescence measurements 
are widely used as nonintrusive indicators of state 
of PSII (e.g. Krause and Weis 1991).

The aim of this work was to investigate how chill-
ing affects light dependence of PN and chlorophyll a 

fluorescence and what the observed changes under 
the whole range of irradiance can tell us about the 
impact of chilling on the photosynthetic apparatus, 
particularly on PSII. Our intention was to study 
the impact of chilling in two maize genotypes with 
different photosynthetic performance. The other 
main idea was to compare the influence of chilling 
during two different seasons – spring and autumn 
where low but positive temperatures could occur. 
The impact of chilling on composition of photo-
synthetic pigments was also investigated.

MATERIAL AND METHODS

Plant material

Seeds of two maize inbred lines CE 704 and CE 810 
(Breeding station CEZEA, Čejč, Czech Republic) 
were sown into pots filled with garden soil. Plants 
were grown in temperated greenhouse (mean daily 
temperatures 20–25°C; mean daily RH 60–70%) 
for 10 days and after this period one half of plants 
was transferred into non-temperated greenhouse 
(mean daily temperatures 10–15°C; large differences 
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during spring day: from 0 a.m. to 6 a.m. mean tem-
peratures 5–7°C while at noon mean temperatures 
20–25°C; smaller differences during the autumn 
day: from 0 a.m. to 6 a.m. mean temperatures 8–10°C 
while at noon mean temperatures 15–17°C; mean 
daily RH 70–80%; Kosová 2004). No additional 
fertiliser was applied during growth period. After 
three weeks leaf discs from matur, fully expanded 
leaves (3rd leaf in control plants, 2nd leaf in chilled 
ones) were cut and used for simultaneous meas-
urement of PN and chlorophyll a fluorescence 
parameters, and probes for the determination of 
photosynthetic pigments were harvested.

Growth characteristics

Length of internodes, number of leaves per plant 
and length of leaf used for measurements of pho-
tosynthetic and fluorescence characteristics, were 
determined during the experiments. After measur-
ing PN, dry matter of leaf discs was determined 
after a period of drying at 80°C for 24 hours.

Net photosynthetic rate

Net photosynthetic rate (PN) was measured by 
a Clark type leaf disc oxygen electrode (LD2/2, 
Hansatech, King’s Lynn, UK). Actinic illumination 
was provided by a halogen lamp and its intensity was 
changed by neutral optical filters. Irradiance (PAR, 
400–700 nm) was measured by quantum radiometer 
Li-Cor (Li-Cor Instruments, Lincoln, NE, USA).

Chlorophyll a fluorescence

Chlorophyll a fluorescence was measured with 
a PAM fluorometer (PAM 101-103, Walz, Effeltrich, 

Germany) which was connected with a source of 
light saturation pulses (KL 1500 electronic, Schott, 
Germany). Ten leaf discs (each of an area of 0.5 cm2) 
were used for one measurement. At least 30 min of 
dark adaptation was applied before initial fluores-
cence Fo was measured. After determining of Fo, 
a light saturation pulse was applied and maximum 
fluorescence Fm was obtained. Variable fluores-
cence Fv was calculated as the difference between 
Fm and Fo. Under actinic illumination steady-state 
fluorescence Fs was measured and Fm’ was deter-
mined under simultaneous application of actinic 
illumination and a saturation pulse. Fluorescence 
parameters characterising either dark-adapted state 
or light-adapted state were calculated according to 
the following formulae: maximum quantum yield 
of PSII, ΦPSII = Fv/Fm = (Fm – Fo)/Fm; actual rate 
of photochemical reduction of RC PSII, Qr/Qt = 
(Fs – Fo)/(Fm’ – Fo) and Stern-Volmer definition of 
non-photochemical quenching, NPQ = (Fm – Fm’)/
Fm’ according to Roháček (2002). For more details 
see, e.g., Tichá et al. (1998).

Pigment analysis

Samples of leaf tissue used for quantitative pig-
ment analysis were immediately frozen in liquid 
nitrogen, lyophilized and then stored at –80°C. 
Photosynthetic pigments were extracted in acetone 
with BHT (butylhydroxytoluene) and MgCO3, and 
separated using HPLC (Spectra-Physics, San Jose, 
USA) on reversed-phase column (Sepharon SGX 
C18, Tessek, Praha). The solvent system was a linear 
gradient of acetonitrile/methanol/water (80:12:6) 
followed by 100% methanol. More details can be 
found in Haisel et al. 1999. DEPS, deepoxidation 
state of xanthophyll cycle pigments violaxanthin 
(V), antheraxanthin (A) and zeaxanthin (Z) was 
calculated as (1/2A + Z)/(V + A + Z).

Table 1. Growth characteristics of plants used for photosynthetic and fluorescence measurements; data represent 
means ± standard errors; means have been calculated from at least 25 plants

Genotype Experimental
season

Length of leaf used
for measurements

(mm)

Number
of leaves per plant

Average dry mass
of leaf disc

per area (mg/cm2)

704C spring 167 ± 4.28 5.62 ± 0.12 2.06 ± 0.40

704S 87 ± 2.15 4.07 ± 0.08 2.13 ± 0.36

810C spring 190 ± 7.32 4.72 ± 0.15 2.13 ± 0.54

810S 102 ± 5.10 3.88 ± 0.11 2.13 ± 0.29

704C autumn 176 ± 7.15 4.3 ± 0.07 1.57 ± 0.26

704S 85 ± 4.82 3.3 ± 0.08 1.71 ± 0.29

C – unchilled plants, S – plants affected by chilling stress
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Statistical analysis

Differences between chilled and control plants 
were evaluated using one-way ANOVA. P-values 
lower than 0.05 were considered statistically sig-
nificant, P-values lower than 0.01 were regarded 
as highly significant.

RESULTS AND DISCUSSION

Growth characteristics

Decrease in growth rate was found in both 
chilled genotypes. After three weeks of chilling 
treatment chilled plants had fewer leaves and 
internodes in comparison with non-chilled ones 
(Table 1, Figure 1A, B). Decrease in growth rate, 
but no effects on plant ontogeny, were observed by 
Nie and Baker (1991), Nie et al. (1992), Sowinski et 
al. (2003). Sowinski et al. (2003) also found thicker 
leaf blades in chilled maize plants.

Net photosynthetic rate PN

In spring, no significant differences in PN in 
chilled CE 704 plants and the non-chilled ones 
under moderate irradiance (in the linear part of 
photosynthetic light response) were found, but 
PN in chilled plants significantly decreased under 
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Figure 2. Comparison of light response of PN expressed 
as µmol O2/ m2/s (photosynthetic light curves). A repre-
sents data from spring experiments measured on CE 704 
genotype, B represents data from spring experiments 
measured on CE 810 genotype, C represents data from 
autumn experiments measured on CE 704 genotype. C = 
unchilled plants, S = plants affected by chilling stress. 
Data represent means from 8 independent measure-
ments ± standard errors. In A, differences in PN between 
control and chilled plants are statistically significant at 
irradiance higher than 110 µmol/m2/s while in B and C 
no statistically significant differences between control 
and chilled plants were found in the whole range of 
irradiance

Figure 1. Length of internodes from the bottom of the 
plant. Each value represents the mean ± standard error 
from at least 25 maize plants. A = CE 704 genotype, B = 
CE 810 genotype, C = unchilled control plants, S = plants 
affected by chilling stress

saturating irradiance (Figure 2A). This observa-
tion is in accordance with results of Massacci et 
al. (1995), Kingston-Smith et al. (1997), Fryer et 
al. (1998) who had measured photosynthetic light 
curves in chill-treated maize leaves. Contrary to CE 
704 plants, values of PN under saturating irradiance 
in chilled CE 810 plants were slightly higher than 
those measured in non-chilled ones (Figure 2B). 
Similar results were found also by other authors 
who had done experiments with genotypes which 
had contrasting ability to adapt to chilling (Massacci 
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et al. 1995) and can be supported by Körnerová 
(2000) who had found enhanced PSII activity in 
isolated chloroplasts of CE 810 plants. However, 
during autumn chilled CE 704 plants managed to 
acclimate to low temperature and to maintain PN 
sufficiently high under saturating irradiances, too 
(Figure 2C).

Fluorescence characteristics

Under chilling, the ratio Fv/Fm in both genotypes 
was decreased (Figure 3A, B). This indicates a de-
creased capacity of PSII to capture solar energy 
under stress conditions and the development of 
a slow-relaxing photoinhibitory component of 
non-photochemical quenching qI (Krause and 
Weis 1991). Similar results were observed by, 
e.g., Massacci et al. (1995), Haldimann et al. (1996), 
Aguilera et al. (1999), Fracheboud et al. (1999), 
Leipner et al. (1999). Low temperatures also led to 
a decrease in Qr/Qt under saturating irradiance, 
but only in CE 704 plants (Figure 4A). This param-
eter is the ratio of reduced (closed) RC PSII Qr to 
the total amount of RC PSII Qt and indicates the 
fraction of RC PSII, which is used in photochemi-
cal reactions. These results are in agreement with 

Hurry et al. (1995) who observed a similar effect 
of chilling on young plants of spring and winter 
wheat cultivars. In spring (Figure 5A), there was 
no difference between chilled CE 704 plants and 
the non-chilled ones in the non-photochemical 
quenching calculated according to Stern-Volmer 
equation, whereas in autumn (Figure 5B), chilling 
increased NPQ especially under saturating irradi-
ance. These results implicate development of xan-
thophyll cycle activity in chilled plants because 
thermal dissipation mediated by xanthophyll cycle 
activity is considered one of the major compounds 
of NPQ under high irradiances. These observations 
are in accordance with hypotheses of many other 
authors who have studied the relationship between 
mechanisms of non-photochemical quenching, 
thermal dissipation and xanthophyll cycle activ-
ity (Demmig-Adams and Adams 1996, Gilmore 
1997, Havaux and Kloppstech 2001).

Pigment analysis

Results obtained from quantitative pigment analy-
sis in CE 704 maize plants in autumn showed an 
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Figure 3. Light dependence of maximum quantum yield 
of RC PSII Fv/Fm measured in spring experiments on 
CE 704 genotype (A) and CE 810 genotype (B). C = 
unchilled plants, S = plants affected by chilling stress. 
Data represent means of 8 independent measurements 
± standard errors. In A and B, statistically significant 
differences between control and chilled plants were 
found in the whole range of irradiance

Figure 4. Comparison of light response of actual rate of 
photosynthetic reduction of RC PSII in spring experi-
ments measured on CE 704 genotype (A) and CE 810 
genotype (B). C = unchilled control plants, S = plants 
affected by chilling stress. Data represent means of 
8 independent measurements ± standard errors. In A, 
a decrease of P-values with increasing irradiance was 
observed, but, however, in both A and B no statistically 
significant differences between unchilled and chilled 
plants in the whole range of irradiance were found
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increase in the content of xanthophyll cycle pig-
ments after chilling (Figure 6A). Especially, there 
was an increase in the deepoxidation state of xan-
thophyll cycle pigments which is the parameter 
expressing the activity of thermal dissipation proc-
esses (Figure 6B). These results are in accordance 
with the observations of, e.g., Haldimann (1996), 
Haldimann et al. (1996) and Venema et al. (1999). 
Surprisingly, under chilling conditions no decrease 
of total chlorophyll and chlorophyll a content was 
found. There was a slight (but statistically sig-
nificant) increase in both parameters (Figure 6C) 
which is in contrast with the results of Massacci 
et al. 1995, Haldimann (1996), Haldimann et al. 
(1996) and Tichá et al. (2002). These results could 
explain the relatively high PN in chilled CE 704 
plants under saturating irradiance in autumn ex-
periments. Holá et al. (2003) observed a similar 
effect of moderate chilling temperatures during 
autumn on chlorophyll a content and values of 
PSII activity in plants of the same genotypes grown 
under similar experimental conditions.

It could be concluded that the chilling of CE 704 
plants during spring did not affect the efficiency 
of the photosynthetic apparatus but decreased its 
capacity. The data obtained from chlorophyll fluo-
rescence measurements suggest that chilling did 
not damage the photosynthetic apparatus directly. 

Figure 5. Light response of non-photochemical quench-
ing NPQ measured with CE 704 plants in spring (A) and 
autumn (B). C = unchilled plants, S = plants affected by 
chilling stress. Data represent means of 8 independent 
measurements ± standard errors. In A, no statistically 
significant differences between unchilled and chilled 
plants were found in the whole range of irradiance while 
in B, statistically significant differences between control 
and chilled plants were found at irradiance higher than 
600 µmol/m2/s

Figure 6. Total content of xanthophyll cycle pigments (A), 
deepoxidation state of xanthophyll cycle pigments (B) 
and chlorophyll a content and total chlorophyll content 
(C) in CE 704 plants measured in autumn experiments. 
C = unchilled plants, S = plants affected by chilling stress. 
Data represent means from 10 independent measure-
ments ± standard errors. Statistically significant differ-
ences were found in all characteristics shown and, with 
exception of C, the differences between unchilled and 
chilled plants were highly significant
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The plants managed to adapt to a decreased rate of 
carbon assimilation processes. Thus, the capacity 
of primary photochemical processes in RC PSII 
was lowered as well. Decreased activity of PSII 
after chilling treatment was already found in our 
previous paper (Tichá et al. 2002). Contrary to 
CE 704 plants, CE 810 ones could probably better 
adapt to chilling, and stressed plants had nearly 
the same PN as the unchilled ones in the whole 
range of irradiance. CE 810 plants can be consid-
ered more tolerant to chilling than CE 704 ones. 
Chilling tolerance itself is very important for the 
further development of maize plants in temperate 
climates but it is not the only factor determining 
the final yield.

In autumn, chilling probably affected photo-
synthetic apparatus of CE 704 plants more mod-
erately than during spring. The plants were able 
to adapt to chilling stress and maintain the rate 
of PN and chlorophyll a fluorescence parameters 
comparable to the control ones. This idea is also 
supported by the results obtained from analysis 
of photosynthetic pigments: an increased level of 
xanthophyll cycle pigments (antheraxanthin and 
zeaxanthin) and increased deepoxidation state of 
these pigments indicate an enhanced rate of thermal 
dissipation processes. The increased content of 
chlorophyll a which is in contrast with data found 
in the literature may be the reason for relatively 
high PN under saturating irradiance.
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ABSTRAKT

Fotosyntetické charakteristiky dvou genotypů kukuřice ovlivněných chladovým stresem

Sledovali jsme vliv chladu na světelné křivky fotosyntetických a fluorescenčních charakteristik u dvou genotypů 
kukuřice (Zea mays L., CE 704 a CE 810) pěstovaných ve skleníku v jarním a v podzimním období. Rychlost čisté 
fotosyntézy (PN) jsme měřili pomocí Clarkovy kyslíkové elektrody, fluorescenci chlorofylu a pomocí PAM fluorome-
tru a obsah fotosyntetických pigmentů pomocí HPLC. Na jaře nebyly rostliny genotypu CE 704 ovlivněny chladem 
při nízké ozářenosti, byly však silně ovlivněny při saturační ozářenosti. Chlad neměl vliv na účinnost fotosyntetic-
kého aparátu, ale snížil jeho kapacitu. Na rozdíl od rostlin CE 704 nebyly rostliny CE 810 ovlivněny chladem ani 
při saturační ozářenosti. Na podzim se rostliny genotypu CE 704 aklimovaly na chlad, takže jsme v celém rozmezí 
ozářenosti nezjistili žádné statisticky významné rozdíly v PN a Fv/Fm mezi kontrolními rostlinami a rostlinami 
ovlivněnými chladem. Zvýšená aktivita nefotochemického zhášení NPQ u rostlin CE 704 vystavených chladu při 
saturační ozářenosti souvisela se zvýšeným obsahem pigmentů xanthofylového cyklu a se zvýšeným stupněm 
deepoxidace pigmentů xanthofylového cyklu.

Klíčová slova: kukuřice (Zea mays L.); genotyp; chlad (chilling); světelné křivky fotosyntetických charakteristik; rych-
lost čisté fotosyntézy (PN); fluorescence chlorofylu a; fotosyntetické pigmenty; růst
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