Nitrate uptake and N allocation in *Triticum aestivum* L. and *Triticum durum* Desf. seedlings

M. Trčková, Z. Stehno, I. Raimanová

Research Institute of Crop Production, Prague-Ruzyne, Czech Republic

ABSTRACT

Inter- and intra-species differences in nitrate uptake and N allocation were studied in wheat seedlings. Two collections of wheat cultivars Triticum aestivum and Triticum durum were grown at controlled conditions in hydroponics (773µM NO_3^- , i.e. 10.8 ppm $N-NO_3^-$). At the age of 3 weeks the net rate of nitrate uptake was measured in depletion experiments and it was expressed as μ mol NO_3^- per g of root fresh weight per hour (μ mol/g FW/h). Nitrate uptake capacity of the whole root system was expressed as μ mol NO_3^- per plant per hour (μ mol/plant/h). At the same time wheat plants were harvested and analyzed for nitrogen content. In contrast to the net rate of NO_3^- uptake (3.98–8.57 μ mol/g FW/h) the net NO_3^- uptake capacity of T. aestivum roots (6.37–11.66 μ mol/plant/h) significantly differed from T. durum roots (15.26–22.69 μ mol/plant/h). Within T. aestivum collection cultivar Roxo exhibits the lowest value in both traits (3.98 μ mol NO_3^- /g FW/h and 6.67 μ mol NO_3^- /plant/h). By contrast Strela was characterized by relatively low NO_3^- uptake rate (5.47 μ mol/g FW/h) and the highest NO_3^- uptake capacity (11.66 μ mol/plant/h). Intra-species differences in T. durum group were not significant. In both species about 70% total nitrogen was found in shoot. Statistically significant differences in nitrogen content and its allocation were affected by growth rate in early stages of development.

Keywords: nitrate uptake rate; nitrate uptake capacity; nitrogen allocation; varietal differences; inter-species differences; wheat; *Triticum aestivum*; *Triticum durum*

Hexaploid bread wheat (*Triticum aestivum* L.) and tetraploid durum wheat (*Triticum durum* Desf.) differ in many characters and properties. Among them differences in grain protein quantity and quality are essential. Synthesis of protein can be limited by nitrogen availability. From this point of view, uptake of nitrogen and its following utilization is very important for grain yield and its quality.

Nitrogen, one of the most important macronutrients is consumed in the greatest quantity and most often limits plant growth. In arable well aerated soils, nitrate is the predominant form of nitrogen. Its concentration in soils of temperate zone is rather low due to leaching and microbial consumption and it exhibits great seasonal and spatial heterogeneity. Therefore plants have developed a very sensitive and selective uptake systems. The acquisition of nitrate from the ambient environment consists of the three successive steps. First, NO_3^- is actively

transported from rhizosphere across plasma membrane into root cell. The intracellular nitrate can be metabolised (reduced by nitrate reductase), stored in the vacuole, or transported to leaves. In cereal (commonly monocotyledonous) roots the nitrate reduction is rather low; the main part of NO_3^- is translocated via xylem to the leaves for next metabolic use or vacuollar storage.

Plants grown in the environment without nitrates have very low ability for NO_3^- uptake. The exposure of plants to nitrate induces synthesis of carrier proteins and the rate of nitrate uptake continuously increases. It reaches maximum after several hours. Most information about net nitrate uptake was obtained by measurements of depletion of NO_3^- from surrounding medium. Net uptake of nitrate is the difference between influx and efflux of NO_3^- across plasma membrane. Short term studies with $^{13}NO_3^-$ or $^{15}NO_3^-$ provided appreciable details on the both.

Supported by Grant Agency of the Czech Republic, Grant No. 521/02/0479.

Uptake of nutrients starts on the root surface where the nutrients, including nitrates, are transported from surroundings into root cells. The transport goes against concentration gradient and requires energy available. Transport of nutrients is mediated by specific protein carriers localised in plasmalemma of root cells.

At least, three types of transport systems were identified for plants (Crawford and Glass 1998). Higher plants grown in the environment without nitrates have constitutive high affinity transport system (cHATS) with low K_m (6–20 μ M) and V_{max} $(0.3-0.82 \mu mol NO_3^-/g of fresh root/h)$. When NO₂ are presented in the cultivation media for some hours or days, transport system with higher parameters K_m (20–100 μM or more) and V_{max} (3–8 $\mu mol~NO_3^-/g$ of root/h) indicated as iHATS is induced. In the environment with high nitrate concentration (over 500µM corresponding 7 ppm N-NO₃) low affinity transport system (LATS) is responsible for additional acceleration of nitrate uptake. Up to now there were identified two groups of genes responsible for transport of nitrates - NRT1 and NRT2. Group NRT2 includes high affinity transport systems. Group NRT1 is not so specific and includes largely low affinity systems induced and constitutive ones as well.

In wheat plants the net rate of nitrate uptake quickly increases from germination to the end of tillering. The intensive growth of the root system during stem elongation is responsible for the subsequent increase of nitrate uptake capacity. It reaches maximum just before anthesis, and subsequently decreases (Oscarson et al. 1995, Trčková and Kamínek 2000). It is known, that about 80% of the total N content accumulates at anthesis and it accounts for 50-100% of the total N content of the wheat grain (Gebbing and Schnyder 1999). During the development there were no major changes in the affinity for nitrate, i.e. in K_m. When uptake capacity was put in relation to the need of the plant in order to maintain growth rate and nitrogen tissue concentration, it was found that wheat plants had a substantial overcapacity for net nitrate uptake at all times (Oscarson et al. 1995).

The main aim of this work was to find inter-species and intra-species differences in nitrate uptake among *T. aestivum* and *T. durum* cultivars.

MATERIAL AND METHODS

For the laboratory tests there were selected 10 cultivars per species (Table 1) of spring *T. aes-*

tivum and T. durum. Seed samples were obtained from the Czech gene bank and selected with the aim to include representatives of different botanical varieties. Differences in protein and gluten contents and sedimentation by Zeleny were used as further selection criteria.

Wheat plants were grown in hydroponics under photoperiod 16 h illumination (a photon density 320 $\mu mol/m^2/s$) and 8 h darkness at temperatures 22°C and 15°C, respectively. Nutrient solution [316 μ M Ca(NO_3)_2, 141 μ M KNO_3, 105 μ M KH_2PO_4, 82.5 μ M MgSO_4, 95 μ M KCl, 2.5 μ M H_3BO_3, 0.8 μ M FeEDTA, 0.2 μ M MnSO_4, 0.2 μ M ZnSO_4, 0.05 μ M CuSO_4] was continuously aerated and replaced two – three times a week.

At the age of 21 days (T. aestivum) or 22 days (T. durum) the net rate of NO_3^- uptake was measured. At the same age plants were harvested, divided into shoot and root to determine their dry weight and total nitrogen content.

Table 1. List of *Triticum aestivum* L. and *Triticum durum* Desf. cultivars used for measurement of nitrate uptake

	Cultivar	Variety	Origin
Triticum aestivum	Broma	aestivum	POL
	Buck Yapeyu	aestivum	ARG
	Sandra	aestivum	CSK
	Saratovskaya 46	aureum	RUS
	AC Reed	graecum	CAN
	Roxo	graecum	PRT
	Kommissar	lutescens	AUT
	Munk	lutescens	DEU
	Pacific	lutescens	CAN
	Strela	milturum	RUS
	Kharkovskaya 21	horde if orme	UKR
	Lyudmila	horde if orme	RUS
	Marmilla	leucomelan	ITA
гит	Saadi	leucomelan	FRA
Triticum durum	Zenit	leucomelan	ITA
	Auroc	leucurum	FRA
	Kievlanka	leucurum	FRA
	Olinto	leucurum	ITA
	Valbelice	leucurum	ITA
	Mojo 2	melanopus	MEX

Bold types = cultivars with higher content of grain protein

The net rate of nitrate uptake was estimated by short-term depletion experiment. Intact wheat plants were transferred into well aerated fresh nutrient solution with 250 μ M NO $_3^-$ (3.5 ppm N-NO $_3^-$). Each treatment was repeated three times. After 30 min lag period, NO $_3^-$ concentration of the nutrient uptake solution was determined in 3h interval. The net rate of nitrate uptake was calculated from NO $_3^-$ depletion and it was expressed as μ mol NO $_3^-$ per 1 g of root fresh weight per hour (μ mol NO $_3^-$ /g FW/h). Nitrate uptake capacity of the whole root system was expressed as μ mol NO $_3^-$ per plant per hour (μ mol NO $_3^-$ /plant/h).

Nitrate concentration in experimental uptake solution was determined spectrophotometrically using a San Plus SKALAR System analyzer. The samples were passed through a column of granulated copper – cadmium to reduce the nitrate to nitrite. The nitrite was measured as azo dye at 540 nm.

Dried ground samples of plant tissues were mineralised with sulphuric acid and selenium as catalyst. Total nitrogen content was determined spectrophotometrically using San Plus SKALAR System analyzer and Bertholet reaction.

Statistically significant differences were determined by ANOVA F-test completed with Tukey honest significant difference (HSD) test at P = 0.95 level.

RESULTS AND DISCUSSION

Net rate of nitrate uptake

The net rate of nitrate uptake was estimated as consumption of NO_3^- per 1g of fresh root matter per hour. In *T. aestivum* the average net rate of nitrate uptake was 5.96 µmol NO_3^- /g FW/h (Table 2). It varied from 3.98 (Roxo) to 7.05 µmol/g FW/h (Sandra – registered cultivar in CR). High values 6.96 µmol have been determined also in Munk (registered cultivar) and Broma. Cultivar Roxo differed significantly from Sandra, Munk, Broma, Pacific and AC Reed with net rate of nitrate uptake over 5.9 µmol/g FW/h (Table 2).

The collection of T. durum cultivars was characterized by higher net NO_3^- rate uptake (the average 6.87 µmol/g FW/h). Intra-species variability analogous to T. aestivum was not statistically significant because of higher intra – varietal variability (Table 3).

Differences in the net rate of nitrate uptake between species were slightly under significant level at P = 0.95.

As mentioned in introduction, nitrate uptake by root cells is a key step of nitrogen metabolism. This process has been intensively studied at the physiological level and more recently at molecular level (Glass et al. 2004). Two classes of genes, NRT1 and NRT2, can be involved in the low and high affinity transport systems. Moreover, both NRT1 and NRT2 are represented by multigene families. Plant cultivation and all depletion experiments were realized in nutrient solutions with nitrate concentration below 1mM and 0.5mM (14 and 7 ppm N-NO₃), respectively. It means, the rate of net nitrate uptake probably correspond to the activity of inducible high affinity transport system (iHATS). In recent years inducible components of the HATS were identified and cloned from roots of several higher plant species - Arabidopsis thaliana (Filleur and Daniel-Vedele 1999), Nicotiana

Table 2. Net rate of nitrate uptake expressed as μ mol NO $_3^-$ per g root fresh weight per hour

	Cultivar	$\mu mol\ NO_3^-/g\ FW/h$	
Triticum aestivum	Roxo	3.98*	a
	Strela	5.47	ab
	Kommisar	5.64	ab
	Buck Yapeyu	5.74	ab
	Saratovskaya 46	5.87	ab
	AC Reed	5.95	b
	Pacific	5.97	b
	Broma	6.96	b
	Munk	6.96	b
	Sandra	7.05	b
	average	5.96	
	Kievlanka	5.67	a
	Olinto	5.67	a
	Saadi	6.33	a
ш	Mojo 2	6.69	a
Triticum durum	Lyudmila	6.78	a
пт с	Kharkovskaya 21	6.86	a
ritic	Marmilla	7.13	a
T_i	Valbelice	7.30	a
	Auroc	7.74	a
	Zenit	8.57	a
	average	6.87	

Difference between species closely nonsignificant at P = 0.95 * μ mol NO $_3^-$ = 0.014 mg N-NO $_3^-$

Table 3. Capacity of nitrate uptake expressed as μ mol NO $_{3}^{-}$ per plant per hour

	Cultivar	mol NO ₃ -/plant/h	
	Roxo	6.37	a
	Kommisar	7.13	ab
	AC Reed	7.71	ab
им	Buck Yapeyu	7.89	ab
stivi	Pacific	8.48	abc
т ав	Saratovskaya 46	9.11	abc
Triticum aestivum	Broma	9.25	abc
Tr_{i}	Sandra	9.41	abc
	Munk	10.12	bc
	Strela	11.66	С
	average	8.71	
	Kievlanka	15.26	a
	Saadi	15.28	a
	Kharkovskaya 21	16.10	a
М	Olinto	16.62	a
duru	Lyudmila	16.67	a
пт с	Mojo 2	17.64	a
Triticum durum	Valbelice	18.97	a
I	Auroc	20.00	a
	Marmilla	20.70	a
	Zenit	22.69	a
	average	17.99	

Difference between species highly significant at P = 0.95

plumbaginifolia (Fraisier et al. 2003), Zea mays (Quaggiotti et al. 2003) and Hordeum vulgare (Truelman et al. 1996, Tong et al. 2005). The measured rate of NO_3^- uptake was relatively high – about 5.96 μmol at *T. aestivum* and 6.87 μmol NO_3^- /g FW/h at *T. durum*. This values approach to $V_{\rm max}$. In used concentration range of depletion experiments the rate of nitrate uptake exhibited features of saturable kinetics.

Net nitrate uptake capacity of the whole root system

The net rate of NO_3^- uptake per plant root system ranged in *T. aestivum* (Table 3) from 6.37 (Roxo) to 11.66 µmol NO_3^- /plant/h (Strela). Roxo

was significantly different from Strela and Munk (10.12 µmol NO_3^-). Whole nitrate uptake capacity is highly modified by root development. From this point of view Strela was a very interesting cultivar. In spite of the relatively low rate of nitrate uptake (5.47 µmol NO_3^- /g FW/h) Strela reached the highest net uptake capacity (11.66 µmol NO_3^- /plant/h).

The enhanced development of root system in *T. durum* was responsible for considerably higher net uptake capacity ranging from 15.26 to 22.69 μ mol NO $_3$ /plant/h (Table 3). Similarly as in rate of nitrate uptake also the differences among cultivars in uptake capacity were not significant. Nevertheless, in both cases Kievlanka showed the lowest values (5.67 μ mol NO $_3$ /g FW/h and 15.26 μ mol NO $_3$ /plant/h) and Zenith the highest ones (8.57 μ mol NO $_3$ /g FW/h and 22.69 μ mol NO $_3$ /plant/h).

Differences in nitrogen uptake capacity between T. aestivum (8.71 µmol $NO_3^-/plant/h$) and T. durum (17.99 µmol $NO_3^-/plant/h$) species were highly significant.

According to certain authors, NO₃ uptake rate is not identical in roots different in age or ontogeny. High uptake rate at root tip of barley (0-1 cm) temporarily decreases in prolongation zone (1-2 cm from tip) and again rises with root maturation. Older root parts with fully differentiated xylem were most active in nitrate uptake but nitrate reductase activity was very low; bulk of nitrate was translocated to the shoot (Jiao et al. 2000). In T. aestivum cultivar Munk the rate of NO2 uptake reached its maximum at the end of tillering, the increase of net uptake capacity at the later stages of development was caused mainly by enlargement of root system (Trčková and Kamínek 2000). Moreover, it is known that nitrate uptake undergoes to feedback regulation mainly by glutamine or ammonium (Gojon at al. 1998). Probably, N-status or N-demand of the plants is the main controlling factor in regulation of nitrate uptake (Tischner 2000).

Growth and partition of dry matter

Two groups of cultivars (*T. aestivum* and *T. durum*, respectively) were developing in different growth rate. Differences in growth of *T. aestivum* and *T. durum* plants measured by dry matter weight after 22 days of growing in nutrient solution were significantly different; average dry matter of *T. durum* group was about 1.8 times higher (0.455 g) than that of *T. aestivum* (0.254 g).

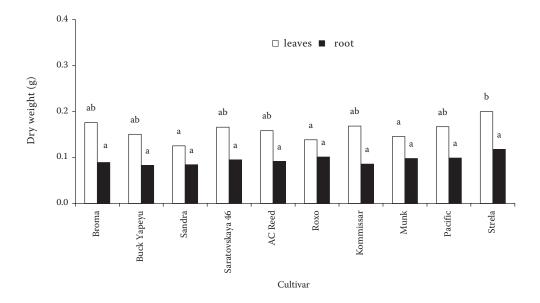


Figure 1. Dry weight of *Triticum aestivum* cultivars grown for 21 days in nutrient solution containing $773\mu M\ NO_3^-$ (10.8 ppm N-NO $_3^-$)

Seedlings of *T. aestivum* cultivars did not differ much and the significant difference was found only between Strela and Sandra. Within the group of *T. durum* cultivars Zenit with dry matter 0.329 g differed significantly from more intensively growing Khakovskaya, Marmilla, Mojo 2, and Lyudmila.

Partitioning of dry matter between shoot and root for *T. aestivum* is shown in Figure 1. Strela as a *T. aestivum* cultivar with highest net nitrate uptake capacity produced highest amount of root dry matter (0.118 g). On the other hand second cultivar in root dry matter weight Roxo (0.101 g)

showed the lowest nitrogen uptake. Within the group of *T. durum* cultivars (Figure 2) the significant differences were determined. Zenit with dry matter of roots 0.101 g differed significantly from Lyudmila, Marmilla, Valbelice, Mojo 2 and Kievlanka that produced over 0.153 g root dry matter.

Similarly like in roots, cultivars of different species differentiated also significantly in dry matter of leaves (shoot). Average leaves dry matter (Figures 1 and 2) of *T. durum* group was nearly two times higher (0.307 g) than that of *T. aestivum* (0.160 g).

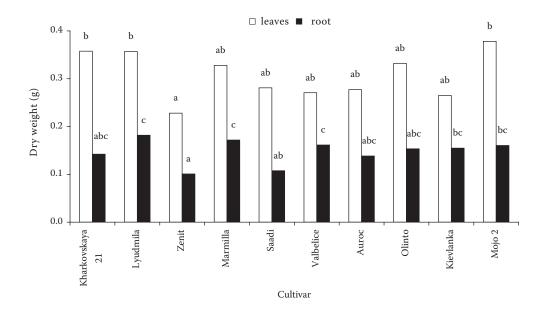


Figure 2. Dry weight of *Triticum durum* cultivars grown for 22 days in nutrient solution containing 773 μ M NO $_3^-$ (10.8 ppm N-NO $_3^-$)

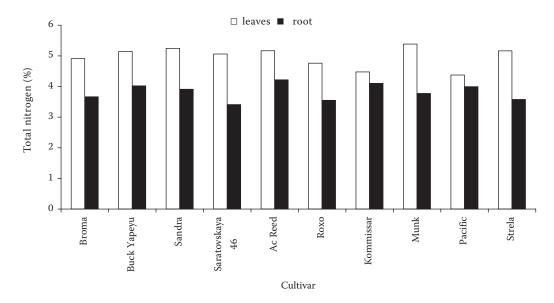


Figure 3. Nitrogen content (%) in dry matter of *Triticum aestivum* cultivars grown for 21 days in nutrient solution containing $773\mu M\ NO_3^-$ (10.8 ppm N-NO $_3^-$)

Within *T. aestivum* group, Strela produced the highest amount of leaf dry matter and Sandra the lowest one (0.125 g). The cultivars mentioned above were significantly different in this trait; Strela differed also from Roxo and Munk. Among *T. durum* cultivars, Zenit produced the lowest quantity of leaf dry matter and was statistically different from all other *T. durum* cultivars.

Nitrogen content and nitrogen allocation

Some intra-species differences in growth of *T. aestivum* and namely *T. durum* indicate different

demand of shoot for N at both species. As expected, the main part of total nitrogen was accumulated in the shoot. Three weeks after sowing this part represents about 70% (65–72% at *T. aestivum* and 68–78% at *T. durum* cultivars) total N. This proportion is usual for good N supply during vegetative growth of wheat (Larsson et al. 1991).

Total nitrogen content (N concentration) in dry matter of wheat tissues is higher at *T. aestivum* than *T. durum* (Figures 3 and 4). In roots of *T. aestivum* group it varies from 3.41 to 4.22%, leaf N content is higher 4.37–5.24%. The same values for *T. durum* are 2.85–3.8% and 3.23–4.44%, respectively.

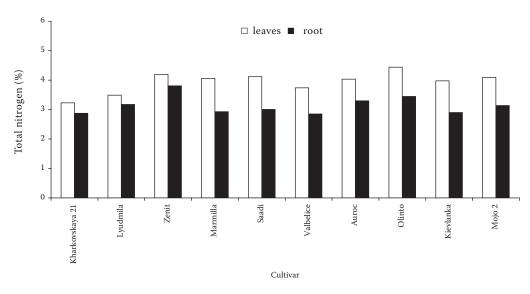


Figure 4. Nitrogen content (%) in dry matter of *Triticum durum* cultivars grown for 22 days in nutrient solution containing $773\mu M\ NO_3^-$ (10.8 ppm N-NO $_3^-$)

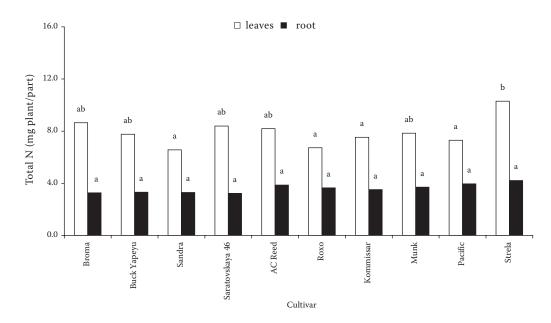


Figure 5. Nitrogen allocation (partition) in shoot and root of *Triticum aestivum* cultivars grown for 21 days in nutrient solution containing $773\mu M\ NO_3^-$ (10.8 ppm N-NO₃)

On the contrary, the nitrogen accumulation in root tissues was significantly lover in *T. aestivum* group (3.60 mg per plant) in comparison to *T. durum* group (4.59 mg). *T. aestivum* cultivars did not differ deeply (Figure 5) – no significant difference was found. Their nitrogen accumulation in roots ranged from 3.23 mg (Saratovskaya 46) to 4.21 mg (Strela).

The extent of nitrogen accumulation in roots of *T. durum* cultivars (Figure 6) varied from the same level as in *T. aestivum* (3.24 mg in Saadi)

to 5.77 mg (Lyudmila). Saadi was significantly different from Lyudmila, Olinto, Mojo 2 and Marmilla.

Deep statistically significant difference was determined between the species in leaf nitrogen accumulation. Average nitrogen accumulation in *T. aestivum* leaves reached only 7.93 mg, whereas in faster developing *T. durum* group it was 12.05 mg per plant. *T. aestivum* cultivar Strela, likely as in roots, accumulated highest amount of nitrogen (10.30 mg) in leaves too. It overcame in this trait

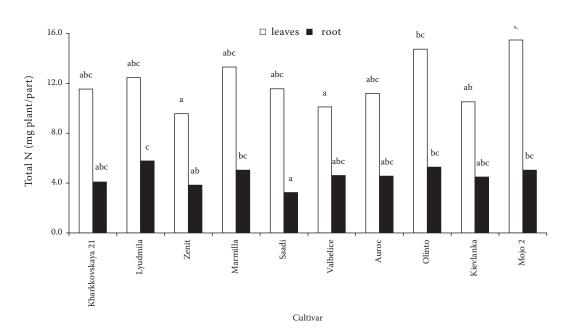


Figure 6. Nitrogen allocation (partition) in shoot and root of *Triticum durum* cultivars grown for 22 days in nutrient solution containing $773\mu M\ NO_3^-$ (10.8 ppm N-NO $_3^-$)

significantly in the group of cultivars Sandra, Roxo, Pacific and Kommisar. Nitrogen accumulation in *T. durum* leaves ranged from 9.57 mg (Zenit) to 15.48 mg (Mojo 2). Cultivars Zenit and Valbelice were significantly different from Mojo 2 and Olinto.

Nitrate uptake - plant growth relationship is manifested in nitrogen concentration. From this point of view it is possible to distinguish some types of cultivars. At *T. aestivum* the highest value was found at AC Reed, the low one at Roxo and Broma respectively. The registered cultivars Munk and Sandra with unregistered Strela and Saratovskaya are characterized by high leaf N concentration and average or low root concentration (Figure 3). In contrast Kommisar and Pacific have low leaf but high root N content. T. durum cultivars exhibit lower N concentration in both leaves and roots. The lowest values were estimated for Kharkovskaya and Lyudmila (hordeiforme) and in less extend for Valbelice. Relatively high N concentrations were found in tissues of Olinto, Zenit and Mojo. Cultivars Saadi, Marmilla and Kievlanka are characterized by higher leaf and lower root N concentration (Figure 4). It is possible to find similar intra- and inter-species differences in later stages of development (unpublished data) and, of course, in grain nitrogen content (Stehno et al. 1998).

Observed nitrate uptake and N allocation enable us to estimate the efficiency of N use by wheat seedlings. Nitrogen use efficiency is usually expressed as ratio between grain yield (weight) and total N content (Przulj and Momcilovic 2001, Presterl et al. 2002); in young plants or seedlings it can be expressed as ratio between dry matter formation and total N content. Analogous to other traits, at the age of 3 weeks this ratio at *T. durum* cultivars (27.3 mg dry weight per mg total N) exceeded the values found for *T. aestivum* (22.04 mg dry weight per mg total N). With regard to the intra-species differences the N use efficiency was usually negatively correlated with nitrogen concentration.

REFERENCES

- Crawford N.M., Glass A.D.M. (1998): Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci., 10: 389–395.
- Filleur S., Daniel-Vedele F. (1999): Expression analysis of a high affinity nitrate transporter isolated from *Arabidopsis thaliana* by differential display. Planta, 20: 461–469.

- Fraisier V., Gojon A., Tillard P., Daniel-Vedele F. (2000): Constitutive expression of a putative high-affinity nirate transporter in *Nicotiana plumbaginifolia*: evidence for post-transcriptional regulation by reduced nitrogen source. Plant J., 23: 489–496.
- Gebbing T., Schnyder H. (1999): Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiol., *121*: 871–878.
- Glass A., Siddiqi Y., Kumar A., Li W., Wang Y., Okamoto M., Unkles S., Kinghorn J.R. (2004): Nitrate uptake by plant roots: making the connections between physiology and molecular biology. In: Abstr. 7th Int. Symp. Inorganic nitrogen assimilation in plants: from the genome to the agro-ecosystem, Wagenningen, the Netherlands.
- Gojon A., Dapoigny L., Lejay L., Tillard P., Rufty T.W. (1998): Effects of genetic modifications on nitrate reductase expression on ¹⁵NO₃ uptake and reduction in *Nicotiana* plants. Plant Cell Environ., *21*: 43–53.
- Jiao G., Barabas N.K., Lips S.H. (2000): Nitrate uptake, storage and reduction along the root axes of barley seedlings. In: Martins-Loucao M.A., Lips S.H. (eds.): Nitrogen in sustainable ecosystem: from the cell to the plant. Backhuys Publ., Leiden, the Netherlands: 35–38.
- Larsson C.M., Larsson M., Purves J.V., Clarkson C.D. (1991): Translocation and cycling through roots of recently absorbed nitrogen and suphur in wheat (*Tritium aestivum*) during vegetative and generative growth. Physiol. Plant., 82: 345–352.
- Oscarson P., Lundborg T., Larsson M., Larsson C.M. (1995): Genotypic differences in nitrate uptake and nitrogen utilization for spring wheat grown hydroponically. Crop Sci., 35: 1056–1062.
- Presterl T., Groh S., Landbeck M., Seitz G., Schmidt W., Geiger H.H. (2002): Nitrogen uptake and utilization efficiency of European maize hybrids developed under conditions of low and high nitrogen input. Plant Breed., *121*: 480–486.
- Przulj N., Nomcilovic V. (2001): Genetic variation for dry matter and nitrogen accumulation and translocation in two-rowed barley. II. Nitrogen translocation. Eur. J. Agron., *15*: 255–256.
- Quaggiotti S., Ruperti B., Borsa P., Destro T., Malagoli M. (2003): Expression of putative high-affinity NO₃⁻ transporter and of an H⁺-ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. J. Exp. Bot., *384*: 1023–1031.
- Stehno Z., Manev M., Dotlačil L. (1998): Grain quality characters in collection of wheat genetic resources. In: Proc. 9th Int. Wheat genetics Symp., 2: 354–356.

- Tischner R. (2000): Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ., 23: 1005–1024.
- Tong Y., Zhou J.J., Li Z., Miller A.J. (2005): A two component high affinity nitrate uptake system in barley. Plant J., 41: 441–450.
- Trčková M., Kamínek M. (2000): Nitrate uptake and nitrogen allocation in wheat as affected by exogenous cytokinins. In: Martin-Loucao M.A., Lips S.H. (eds.):
- Nitrogen in sustainable ecosystem: from the cell to the plant. Backhuys Publ., Leiden, the Netherlands: 261–268.
- Truelman L.J., Richardson A., Forde B.G. (1996): Molecular cloning of higher plants homologues of the high affinity nitrate transporters of *Chlamydomonas reinhadtii* and *Aspergillus nidulans*. Gene, *175*: 223–231.

Received on November 29, 2004

Corresponding autor:

Ing. Marie Trčková, Výzkumný ústav rostlinné výroby, Drnovská 507, 161 06 Praha 6-Ruzyně, Česká republika phone: + 420 233 022 474, fax: + 420 233 310 636, e-mail: trckova@vurv.cz