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ABSTRACT

The objective of this study was to investigate the benefits of methods that incorporate terrain attributes as covaria-
tes into the prediction of soil depth. Three primary terrain attributes — elevation, slope and aspect — were tested to
improve the depth prediction from conventional soil survey dataset. Different methods were compared: 1) ordinary
kriging (OK), 2) co-kriging (COK), 3) regression-kriging (REK), and 4) linear regression (RE). The evaluation of pre-
dicted results was based on comparison with real validation data. With respect to means, OK and COK provided
the best prediction (both 110 cm), RE and REK gave the worst results, their means were significantly lower (79 and
108 cm, respectively) than the mean of real data (111 cm). F-test showed that COK with slope as covariate gave the
best result with respect to variances. COK also reproduced best the range of values. The use of auxiliary terrain data
improved the prediction of soil depth. However, the improvement was relatively small due to the low correlation of

the primary variable with used terrain attributes.
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Geostatistics is a group of methods that has
been widely used for prediction of variability of
soil properties in last two decades (Utset et al.
2000). This technique provides prediction of soil
properties at unobserved locations. However, all
interpolation techniques, geostatistical or other,
require a fairly dense network of sampling sites
from which data are collected. The amount of the
data is very often limited due to the cost of col-
lecting soil attributes (Kalivas et al. 2002, Bortvka
et al. 2003, Wu et al. 2003). Another limitation,
when data from conventional soil survey are used,
can be their availability and exploitability due to
a specific density and distribution of sampling
sites over the space. The sampling design, where
the soil pits are not randomly distributed over
the area, but subjectively selected by the survey-
ors, make data less applicable for geostatistical
investigation. This issue is discussed in detail by
Penizek and Boruavka (2004).

Improved estimation of soil properties can be
achieved by incorporating secondary spatial in-
formation into prediction (Mueller and Pierce

2003). That terrain attributes (e.g. elevation, slope,
aspect, curvature) may aid spatial estimation of soil
properties, because the relief has a great influence
on soil formation, as it was first stated by Jenny
in 1941 (McBratney et al. 2003). The exploitation
of terrain attributes as secondary information
for the prediction of different soil properties is
presented by many authors. For example Mueller
and Pierce (2003) used slope, aspect, elevation
and profile curvature for improving the predic-
tion of soil carbon. Kalivas et al. (2002) used the
distance from a river for estimating the content
of sand and clay. Different terrain attributes for
improvement of soil depth prediction were used
for example by Gessler et al. (1995), Odeh et al.
(1995), McKenzie and Ryan (1999), or Hengl et al.
(2003). The incorporation of the auxiliary terrain
information can be made by different techniques.
The most often used are co-kriging and regres-
sion-kriging (Kalivas et al. 2002, McBratney et al.
2003, Mueller and Pierce 2003).

The objective of this study is to investigate ben-
efits of the methods that incorporate the terrain
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attributes as covariates into the prediction of soil
depth. Three primary terrain attributes — eleva-
tion, slope and aspect — were used to improve
the prediction from a conventional soil survey
dataset.

MATERIAL AND METHODS

Studied area. The district of Tabor that was cho-
sen for this study is located in Southern Bohemia.
Its total area is 1327 km?, 59% of which is agri-
cultural land. Altitude in the region ranges from
354 to 722 m. Geology of the area is formed by
granites, syenites, gneisses, amphibolites, tertiary
sediments, loesses, clays and alluvial sediments.
Annual precipitation ranges from 560 to 660 mm,
average temperature is 6.4 to 7.3°C. Cambisols
represent prevailing soil unit (49.5%), the rest of
the area is covered mainly by Luvisols (26.9%),
Gleysols (17.2%), Stagnosols and Planosols (4.4%),
and Fluvisols (1.8%). Small areas are covered by
Regosols, Histosols and Lithosols.

Soil survey and terrain data. Data about the
soil depth from 603 profiles of agricultural soils
resulting from the Systematic Soil Survey from
1960’s were used (Némecek et al. 1964). Data about
terrain were obtained from the Fundamental Base

of Geographic Data of the Czech Republic at the
scale 1:10 000 (ZABAGED, LSO 2001). The altitude,
slope and aspect were generated from contour lines
(2 meters density) using Spatial Analyst ArcView
3.2 software (ESRI, Inc.). The angle of aspect was
transformed by cosine mathematic function to
distinguish northern and southern orientation
of the slopes. These three properties were gener-
ated as a raster with 100 x 100 meter pixels and
consequently assigned to the 603 profiles and
to a regular squared grid with cell size 1 x 1 km
(1325 points) (Figure 1).

Prediction methods. The data about soil profile
depth and the terrain data were used in predic-
tion of the soil depth on unobserved places by
the following methods: 1) ordinary kriging (OK),
2) co-kriging (COK), 3) regression-kriging (REK),
and 4) multiple linear regression (RE).

Ordinary kriging (OK)

Ordinary kriging is one of the most basic methods
of kriging (Oliver and Webster 1991). It provides
estimate at unobserved location of the variable Z,
based on the weighted average of adjacent ob-
served sites within a given area. The theory is
derived from that of regionalized variables and
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Figure 1. Area of interest: sampling sites (left), regular grids with cell size 1 x 1 km and validation dataset

(right)
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can be briefly described by considering an in-
trinsic random function denoted by Z(s;), where
s, represents all sample locations, i = 1, ..., n. An
estimate of the weighted average given by the
ordinary kriging predictor at an unsampled site
z(s,) is defined by:

z(Sy) Zi}‘iz(si) (1)

where: \; are the weights assigned to each of the
observed sample sites. These weights sum to unit
so that the predictor provides an unbiased esti-
mation:

>, =1 @)
j=1

The weights are calculated from the matrix
equation:

c=A" (3)

where: A — a matrix of semivariances between the
data points; b — a vector of estimated semivariances
between the data points and the point at which the
variable Z is to be predicted; and ¢ stands for the
resulting weights and the Lagrange Multipliers ¢
(Triantafilis et al. 2001).

Co-kriging (COK)

Co-kriging is a geostatistical technique developed
to improve the estimation of a variable using the
information on other spatially correlated variables
that are more densely sampled. This is very useful
if the primary variable is difficult or expensive to
measure and it is correlated with a more available
covariate. The variables are called co-regionalized
and they are spatially dependent. With one sec-
ondary variable, COK estimator for the primary
variable is written:

1y 1,

z,(8y) = Z}\‘zl(s,)zl(si) +Z7\‘zz(sj)zz (s;)
i=1 j=1

1,

3 A, y=1 and A ..=0 (4)
1(5;) z5(s7)
i=1 j=1 '

where: Z, is the primary variable and Z, is the
secondary variable; z,(s,) is the value of Z, to be
estimated at location s; X, (s,) is the weight associ-
ated with the measured value of Z1 at location s5
)\ZQ(S].) is the weight associated with the measured
value of Z, at location s; n, is the neighborhood
of Z,; and n, is the neighborhood of Z, used in
estimation (Wu et al. 2003).
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Regression-kriging (REK)

Regression kriging methods involve various
combinations of linear regressions and kriging.
The REK belongs to non-stationary geostatistical
methods. It is a suitable technique for prediction
of a primary variable when the auxiliary variables
are available at all grid-nodes and correlated with
the target variable (Hengl et al. 2003). The simplest
model is based on normal regression followed
by ordinary kriging with regression residuals.
The prediction is based on separate prediction
of drift and residuals and then adding them back
together:

z(sy) = m(sy) +e(s,)

4 n
Z(SO)ZZBk"h(so)"'zwi(so)'e(si) ‘70(50)21 (5)

where: [Sk are estimated drift model coefficients;
w, are weights determined by the semivariance
function; e are the regression residuals; and g, (s,) ...
q,(s,) are values of auxiliary variables at location s
(Hengl et al. 2003).

0

Regression

The general purpose of multiple regression is to
find a relationship between several independent or
predictor variables and a dependent or criterion
variable. It is possible to construct a linear equation
containing all those variables. In general, multiple
regression procedures will estimate a linear equa-
tion of the form:

Z:bO+b1-Q1+b2AQ2+...+bP-QP (6)

where: b, b,, ..., b _are the regression coefficients
which represent the independent contributions of
each independent variable (Q,, Q,, Q;) to the pre-
diction of the dependent variable (Z). The equation
corresponds to the first part of equation (5):

p
Z(SO)ZZBk'%(So) %(50)21

Spatial prediction. The spatial variation of the
soil depth and terrain properties was described by
semivariograms. The program used for interpolation
was GS+ (Robertson 2000). The type of the theoreti-
cal model that fitted best the variogram was chosen
by weighted least square method (Table 1).

Validation of models. Validation of the results
was done by two comparisons. First, the sets of
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Table 1. Characteristics of variograms

Method* Model Nugget Sill Range (m) r? RSS
DEPTH OK exponential 1.000 539.1 510 0.660 108929
SLOPE OK exponential 0.001 1.995 490 0.883 0.4
ALTITUDE OK linear 1.000 2112 6340 0.982 98908
ASPECT** OK exponential 0.001 0.499 490 0.798 0.1
RES_DEPTH*** REK exponential 1.000 535 510 0.658 104647
D x SLOPE COK exponential -0.010 -3.751 420 0.186 52
D x ASPECT COK exponential 0.000 -0.001 21100 0.246 20
D x ALTITUDE COK exponential -0.010 -12.7 2870 0.102 22382

*OK - kriging, REK - regression-kriging, COK — co-kriging; **ASPECT = cos(aspect); ***variogram of regression

residuals of soil profile depth

predicted values at the terrain regular grid were
compared with the original set of data used for
the prediction. Properties of these sets were evalu-
ated by ANOVA multiple range test to compare
the means, and F-test to compare the variance.
Second, a group of 50 samples at locations other
than those used for prediction of the soil depth
by the models was compared. The validation set
was chosen to cover the whole studied area and
to describe all soil units at the studied area with
regard to their proportion. Paired ¢-test was used
to compare the values at individual locations.

RESULTS AND DISCUSSION

All models for terrain attributes showed a very
small portion of nugget effect (Table 1). Slope and
aspect were fitted by the exponential model with the
same range of 490 meters. Altitude was described
by a linear model and the range was not reached at
the observed distance. Variogram describing the
spatial variability of soil depth showed a similar
range and proportion of the nugget variance as

slope and aspect, which can indicate spatial de-
pendence of these characteristics. The variogram
of regression residuals of the depth (RES_DEPTH)
used in REK analysis showed very similar results,
which is not typical because the variogram of re-
siduals has usually smaller range and sill (Hengl et
al. 2003). Cross-variograms that characterize the
spatial relationship of the soil depth and the terrain
properties were calculated for COK analysis. Only
the range for cross-variogram of soil depth and
slope (D x SLOPE) showed similar value as the
individual semivariograms, which indicates spatial
correlation of these properties, and therefore it
was used for the prediction. An overview of all
variograms and cross-variograms is presented in
Table 1. The prediction by multiple regression
equation used for prediction in RE and REK was
calculated as follows:

DEPTH = 88.8 + 1.020 x ASPECT + 0.0573 x ALTI-
TUDE - 2.491 x SLOPE

Even though the P-value of 0.0009 indicates
a statistically significant relationship, only 3% of

Table 2. Summary statistics of source dataset and results of performed methods for the whole dataset

Count Mean (cm) Variance Min. (cm) Max. (cm) Range (cm)
DEPTH 553 111 594.0 40 160 120
OK 1325 110 142.4 70 144 74
COK 1325 110 245.2 60 153 93
REK 1325 79 169.7 40 124 84
RE 1325 108 41.5 55 127 72
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Table 3. ANOVA Multiple range tests for comparison
of means of performed methods with source dataset
(method 95% LSD)

Count Mean Homogeneous group
(cm)
DEPTH 553 111.0 X
OK 1325 110.0 X
COK 1325 110.3 X
REK 1325 79.0 X
RE 1325 108.4 X

Table 4. F-ratios of variance of results for comparison
of performed methods with source dataset

Variance Df F-ratio P-value
DEPTH 594.0 553
OK 142.4 1325 4.582 * <0.001
COK 245.2 1325 2.662 * <0.001
REK 169.7 1325 3.702 < 0.001
RE 41.5 1325 14.314 < 0.001

*significant difference at 95% confidence interval

the variability of the DEPTH was explained by
this model (R? = 2.94%).

The first evaluation of predicted results by or-
dinary kriging (OK), co-kriging (COK), regression
kriging (REK) and regression (RE) is based on
comparison of mean, variance and range of values
for the four prediction methods and the real data
(Table 2). This comparison shows how well the pa-
rameters of the original dataset are reconstructed
in the predicted datasets. With respect to means
the OK and COK provided the best prediction,

because the ANOVA multiple range test placed
them to the same class as the original dataset
(Table 3). RE and REK gave the worst results, theirs
means were statistically significantly lower in both
cases (Table 3). The variances analyzed by F-test
show statistically significant differences between
the results of prediction methods and the original
dataset (Table 4). It indicates flattening in the
prediction and diminishing of the local extremes.
Even though, COK provides the best result. Third
evaluating aspect was the range that indicates
flattening of the prediction as well as of the vari-
ance. The results confirm the previous statement
based on the evaluation of variance. The lowest
flattening was obtained by COK (Table 2). OK, RE
and REK provided worst results. The decrease of
the range in OK corresponds to the results pre-
sented by Wu et al. (2003). Such a poor success
of prediction by REK and RE was caused by weak
relationship between the soil depth and used ter-
rain attributes. Another possible reason why REK
failed in prediction can be the fact that if areas of
very steep slopes are overlooked during the sam-
pling, in the prediction by REK they will appear
as extreme biased values. This does not need to
be evident in a shift (increase or decrease) of the
mean, if these areas have not a large extent, but it
is evident in an increase of range of the predicted
values. It might be the case of this study, because
the input dataset originated only from agricultural
land, while the steepest areas are usually covered
by forests; it shifts the predicted mean to a lower
value (the relationship between slope and soil
depth is inverse). This hypothesis is supported by
the fact that the minimum value from REK is the
lowest among the prediction methods.

Table 5 presents how precise is the prediction
on individual sites. This evaluation is done by
paired ¢-test that is focused on comparisons of
predicted and real values at 50 validation sites.

Table 5. Summary statistics and ¢-test of paired differences between predicted values and validation dataset

Count 1\(/52;1 Variance 1(\2111:) l(vcljri() R(irr;g)e t-value P-value
DEPTH 50 112 592.2 50 150 100
OK 50 110 160.7 86 136 50 0.527 0.601
COK 50 108 236.0 67 140 73 1.073 0.289
REK 50 79 155.1 52 106 54 7.684 < 0.001*
RE 50 109 9.7 103 116 13 0.793 0.431

*significant difference at 95% confidence interval
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The worst result was provided, as in the previous
comparison, by REK. It is caused by high regres-
sion residuals used for kriging that are a result
of weak correlation between the soil depth and
used terrain covariates (Triantafilis et al. 2001).
The other methods (OK, COK and RE) provided
good estimation with similar results according to
the ¢-test. The reason why COK did not provide
significantly better results than OK can be the
location of validation dataset close to the input
data, while the improvement by covariates is ex-
pressed on larger distances (Wu et al. 2003). The
values predicted by RE, thought not statistically
different from the observed data, were in a very
narrow range compared not only to the real data
but also to the other prediction methods.

Generally, RE gave the worst results in predic-
tion over the space, because no spatial correlation
was taken into account. REK failed in prediction
as well. One reason can be a very low correla-
tion of soil depth and primary terrain attributes,
which is apparent in this case. This result corre-
sponds to the conclusions of Kalivas et al. (2002)
and Mueller and Pierce (2003) that REK does not
provide better results than COK when correlation
coefficients are low. For that reason it is important
to know the strength of the relationship between
the target variables and the auxiliary ones (Kalivas
et al. 2002). The absence or presence of a spatial
structure of the regression residuals of the relation
is also important for choosing among interpola-
tion methods using auxiliary variables (Kalivas et
al. 2002). Another reason can be overlooking of
areas with very steep slopes during the sampling;
they will appear as underestimated values in the
prediction by REK. COK with slope as covariate
gave slightly better results of prediction over the
space than other methods.

The use of auxiliary terrain data slightly improved
the prediction of soil depth. The best results were
obtained using co-kriging method with slope as
covariate. In prediction on validation individual
sites it succeeded similarly as OK and RE. Moreover,
it reproduced best the parameters of the original
dataset, compared to the other three methods.
The methods based on regression performed the
worst. Regression-kriging reproduced better the
variation in the dataset, compared to regression
alone. The reason why the improvement of the
prediction was not more significant is a relatively
low correlation of the predicted soil property with
used terrain attributes. Further research should
focus on three problems: 1) how much the size of
the pixel, from which the terrain parameters were
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generated, influences the correlation, 2) the extent
of deformation of prediction given by used sampling
scheme (density of sampling, non-sampled areas),
and 3) exploitation of other terrain attributes (e.g.
profile curvature, flow path length, topographic
wetness indices) for soil depth prediction, that
may be more spatially correlated.
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