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Geostatistics is a group of methods that has 
been widely used for prediction of variability of 
soil properties in last two decades (Utset et al. 
2000). This technique provides prediction of soil 
properties at unobserved locations. However, all 
interpolation techniques, geostatistical or other, 
require a fairly dense network of sampling sites 
from which data are collected. The amount of the 
data is very often limited due to the cost of col-
lecting soil attributes (Kalivas et al. 2002, Borůvka 
et al. 2003, Wu et al. 2003). Another limitation, 
when data from conventional soil survey are used, 
can be their availability and exploitability due to 
a specific density and distribution of sampling 
sites over the space. The sampling design, where 
the soil pits are not randomly distributed over 
the area, but subjectively selected by the survey-
ors, make data less applicable for geostatistical 
investigation. This issue is discussed in detail by 
Penížek and Borůvka (2004).

Improved estimation of soil properties can be 
achieved by incorporating secondary spatial in-
formation into prediction (Mueller and Pierce 

2003). That terrain attributes (e.g. elevation, slope, 
aspect, curvature) may aid spatial estimation of soil 
properties, because the relief has a great influence 
on soil formation, as it was first stated by Jenny 
in 1941 (McBratney et al. 2003). The exploitation 
of terrain attributes as secondary information 
for the prediction of different soil properties is 
presented by many authors. For example Mueller 
and Pierce (2003) used slope, aspect, elevation 
and profile curvature for improving the predic-
tion of soil carbon. Kalivas et al. (2002) used the 
distance from a river for estimating the content 
of sand and clay. Different terrain attributes for 
improvement of soil depth prediction were used 
for example by Gessler et al. (1995), Odeh et al. 
(1995), McKenzie and Ryan (1999), or Hengl et al. 
(2003). The incorporation of the auxiliary terrain 
information can be made by different techniques. 
The most often used are co-kriging and regres-
sion-kriging (Kalivas et al. 2002, McBratney et al. 
2003, Mueller and Pierce 2003).

The objective of this study is to investigate ben-
efits of the methods that incorporate the terrain 
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attributes as covariates into the prediction of soil 
depth. Three primary terrain attributes – eleva-
tion, slope and aspect – were used to improve 
the prediction from a conventional soil survey 
dataset.

MATERIAL AND METHODS

Studied area. The district of Tábor that was cho-
sen for this study is located in Southern Bohemia. 
Its total area is 1327 km2, 59% of which is agri-
cultural land. Altitude in the region ranges from 
354 to 722 m. Geology of the area is formed by 
granites, syenites, gneisses, amphibolites, tertiary 
sediments, loesses, clays and alluvial sediments. 
Annual precipitation ranges from 560 to 660 mm, 
average temperature is 6.4 to 7.3°C. Cambisols 
represent prevailing soil unit (49.5%), the rest of 
the area is covered mainly by Luvisols (26.9%), 
Gleysols (17.2%), Stagnosols and Planosols (4.4%), 
and Fluvisols (1.8%). Small areas are covered by 
Regosols, Histosols and Lithosols.

Soil survey and terrain data. Data about the 
soil depth from 603 profiles of agricultural soils 
resulting from the Systematic Soil Survey from 
1960’s were used (Němeček et al. 1964). Data about 
terrain were obtained from the Fundamental Base 

of Geographic Data of the Czech Republic at the 
scale 1:10 000 (ZABAGED, LSO 2001). The altitude, 
slope and aspect were generated from contour lines 
(2 meters density) using Spatial Analyst ArcView 
3.2 software (ESRI, Inc.). The angle of aspect was 
transformed by cosine mathematic function to 
distinguish northern and southern orientation 
of the slopes. These three properties were gener-
ated as a raster with 100 × 100 meter pixels and 
consequently assigned to the 603 profiles and 
to a regular squared grid with cell size 1 × 1 km 
(1325 points) (Figure 1).

Prediction methods. The data about soil profile 
depth and the terrain data were used in predic-
tion of the soil depth on unobserved places by 
the following methods: 1) ordinary kriging (OK), 
2) co-kriging (COK), 3) regression-kriging (REK), 
and 4) multiple linear regression (RE).

Ordinary kriging (OK)

Ordinary kriging is one of the most basic methods 
of kriging (Oliver and Webster 1991). It provides 
estimate at unobserved location of the variable Z, 
based on the weighted average of adjacent ob-
served sites within a given area. The theory is 
derived from that of regionalized variables and 

Figure 1. Area of interest: sampling sites (left), regular grids with cell size 1 × 1 km and validation dataset 
(right)
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can be briefly described by considering an in-
trinsic random function denoted by Z(si), where 
si represents all sample locations, i = 1, …, n. An 
estimate of the weighted average given by the 
ordinary kriging predictor at an unsampled site 
z(s0) is defined by:

 (1)

where: λi are the weights assigned to each of the 
observed sample sites. These weights sum to unit 
so that the predictor provides an unbiased esti-
mation:

 (2)

The weights are calculated from the matrix 
equation:

c = A–1b (3)

where: A – a matrix of semivariances between the 
data points; b – a vector of estimated semivariances 
between the data points and the point at which the 
variable Z is to be predicted; and c stands for the 
resulting weights and the Lagrange Multipliers ψ 
(Triantafilis et al. 2001).

Co-kriging (COK)

Co-kriging is a geostatistical technique developed 
to improve the estimation of a variable using the 
information on other spatially correlated variables 
that are more densely sampled. This is very useful 
if the primary variable is difficult or expensive to 
measure and it is correlated with a more available 
covariate. The variables are called co-regionalized 
and they are spatially dependent. With one sec-
ondary variable, COK estimator for the primary 
variable is written:

  and  (4)

where: Z1 is the primary variable and Z2 is the 
secondary variable; z1(s0) is the value of Z1 to be 
estimated at location s0; λZ1(si) is the weight associ-
ated with the measured value of Z1 at location si; 
λZ2(sj) is the weight associated with the measured 
value of Z2 at location sj; n1 is the neighborhood 
of Z1; and n2 is the neighborhood of Z2 used in 
estimation (Wu et al. 2003).

Regression-kriging (REK)

Regression kriging methods involve various 
combinations of linear regressions and kriging. 
The REK belongs to non-stationary geostatistical 
methods. It is a suitable technique for prediction 
of a primary variable when the auxiliary variables 
are available at all grid-nodes and correlated with 
the target variable (Hengl et al. 2003). The simplest 
model is based on normal regression followed 
by ordinary kriging with regression residuals. 
The prediction is based on separate prediction 
of drift and residuals and then adding them back 
together:

 (5)

where: βk are estimated drift model coefficients; 
wi are weights determined by the semivariance 
function; e are the regression residuals; and q1(s0) … 
q2(s0) are values of auxiliary variables at location s0 
(Hengl et al. 2003).

Regression

The general purpose of multiple regression is to 
find a relationship between several independent or 
predictor variables and a dependent or criterion 
variable. It is possible to construct a linear equation 
containing all those variables. In general, multiple 
regression procedures will estimate a linear equa-
tion of the form:

 (6)

where: b1, b2, …, bp are the regression coefficients 
which represent the independent contributions of 
each independent variable (Q1, Q2, Q3) to the pre-
diction of the dependent variable (Z). The equation 
corresponds to the first part of equation (5):

 

Spatial prediction. The spatial variation of the 
soil depth and terrain properties was described by 
semivariograms. The program used for interpolation 
was GS+ (Robertson 2000). The type of the theoreti-
cal model that fitted best the variogram was chosen 
by weighted least square method (Table 1).

Validation of models. Validation of the results 
was done by two comparisons. First, the sets of 
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predicted values at the terrain regular grid were 
compared with the original set of data used for 
the prediction. Properties of these sets were evalu-
ated by ANOVA multiple range test to compare 
the means, and F-test to compare the variance. 
Second, a group of 50 samples at locations other 
than those used for prediction of the soil depth 
by the models was compared. The validation set 
was chosen to cover the whole studied area and 
to describe all soil units at the studied area with 
regard to their proportion. Paired t-test was used 
to compare the values at individual locations.

RESULTS AND DISCUSSION

All models for terrain attributes showed a very 
small portion of nugget effect (Table 1). Slope and 
aspect were fitted by the exponential model with the 
same range of 490 meters. Altitude was described 
by a linear model and the range was not reached at 
the observed distance. Variogram describing the 
spatial variability of soil depth showed a similar 
range and proportion of the nugget variance as 

slope and aspect, which can indicate spatial de-
pendence of these characteristics. The variogram 
of regression residuals of the depth (RES_DEPTH) 
used in REK analysis showed very similar results, 
which is not typical because the variogram of re-
siduals has usually smaller range and sill (Hengl et 
al. 2003). Cross-variograms that characterize the 
spatial relationship of the soil depth and the terrain 
properties were calculated for COK analysis. Only 
the range for cross-variogram of soil depth and 
slope (D × SLOPE) showed similar value as the 
individual semivariograms, which indicates spatial 
correlation of these properties, and therefore it 
was used for the prediction. An overview of all 
variograms and cross-variograms is presented in 
Table 1. The prediction by multiple regression 
equation used for prediction in RE and REK was 
calculated as follows:

DEPTH = 88.8 + 1.020 × ASPECT + 0.0573 × ALTI-
TUDE – 2.491 × SLOPE

Even though the P-value of 0.0009 indicates 
a statistically significant relationship, only 3% of 

Table 2. Summary statistics of source dataset and results of performed methods for the whole dataset

Count Mean (cm) Variance Min. (cm) Max. (cm) Range (cm)

DEPTH 553 111 594.0 40 160 120

OK 1325 110 142.4 70 144 74

COK 1325 110 245.2 60 153 93

REK 1325 79 169.7 40 124 84

RE 1325 108 41.5 55 127 72

Table 1. Characteristics of variograms

Method* Model Nugget Sill Range (m) r2 RSS

DEPTH OK exponential 1.000 539.1 510 0.660 108929

SLOPE OK exponential 0.001 1.995 490 0.883 0.4

ALTITUDE OK linear 1.000 2112 6340 0.982 98908

ASPECT** OK exponential 0.001 0.499 490 0.798 0.1

RES_DEPTH*** REK exponential 1.000 535 510 0.658 104647

D × SLOPE COK exponential –0.010 –3.751 420 0.186 52

D × ASPECT COK exponential 0.000 –0.001 21100 0.246 20

D × ALTITUDE COK exponential –0.010 –12.7 2870 0.102 22382

*OK – kriging, REK – regression-kriging, COK – co-kriging; **ASPECT = cos(aspect); ***variogram of regression 
residuals of soil profile depth
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the variability of the DEPTH was explained by 
this model (R2 = 2.94%).

The first evaluation of predicted results by or-
dinary kriging (OK), co-kriging (COK), regression 
kriging (REK) and regression (RE) is based on 
comparison of mean, variance and range of values 
for the four prediction methods and the real data 
(Table 2). This comparison shows how well the pa-
rameters of the original dataset are reconstructed 
in the predicted datasets. With respect to means 
the OK and COK provided the best prediction, 

because the ANOVA multiple range test placed 
them to the same class as the original dataset 
(Table 3). RE and REK gave the worst results, theirs 
means were statistically significantly lower in both 
cases (Table 3). The variances analyzed by F-test 
show statistically significant differences between 
the results of prediction methods and the original 
dataset (Table 4). It indicates flattening in the 
prediction and diminishing of the local extremes. 
Even though, COK provides the best result. Third 
evaluating aspect was the range that indicates 
flattening of the prediction as well as of the vari-
ance. The results confirm the previous statement 
based on the evaluation of variance. The lowest 
flattening was obtained by COK (Table 2). OK, RE 
and REK provided worst results. The decrease of 
the range in OK corresponds to the results pre-
sented by Wu et al. (2003). Such a poor success 
of prediction by REK and RE was caused by weak 
relationship between the soil depth and used ter-
rain attributes. Another possible reason why REK 
failed in prediction can be the fact that if areas of 
very steep slopes are overlooked during the sam-
pling, in the prediction by REK they will appear 
as extreme biased values. This does not need to 
be evident in a shift (increase or decrease) of the 
mean, if these areas have not a large extent, but it 
is evident in an increase of range of the predicted 
values. It might be the case of this study, because 
the input dataset originated only from agricultural 
land, while the steepest areas are usually covered 
by forests; it shifts the predicted mean to a lower 
value (the relationship between slope and soil 
depth is inverse). This hypothesis is supported by 
the fact that the minimum value from REK is the 
lowest among the prediction methods.

Table 5 presents how precise is the prediction 
on individual sites. This evaluation is done by 
paired t-test that is focused on comparisons of 
predicted and real values at 50 validation sites. 

Table 3. ANOVA Multiple range tests for comparison 
of means of performed methods with source dataset 
(method 95% LSD)

Count Mean 
(cm) Homogeneous group

DEPTH 553 111.0 X

OK 1325 110.0 X

COK 1325 110.3 X

REK 1325 79.0 X

RE 1325 108.4 X

Table 4. F-ratios of variance of results for comparison 
of performed methods with source dataset

Variance Df F-ratio P-value

DEPTH 594.0 553

OK 142.4 1325 4.582 * < 0.001

COK 245.2 1325 2.662 * < 0.001

REK 169.7 1325 3.702 * < 0.001

RE 41.5 1325 14.314 * < 0.001

*significant difference at 95% confidence interval

Table 5. Summary statistics and t-test of paired differences between predicted values and validation dataset

Count Mean 
(cm) Variance Min. 

(cm)
Max. 
(cm)

Range 
(cm) t-value P-value

DEPTH 50 112 592.2 50 150 100

OK 50 110 160.7 86 136 50 0.527 0.601

COK 50 108 236.0 67 140 73 1.073 0.289

REK 50 79 155.1 52 106 54 7.684 < 0.001*

RE 50 109 9.7 103 116 13 0.793 0.431

*significant difference at 95% confidence interval
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The worst result was provided, as in the previous 
comparison, by REK. It is caused by high regres-
sion residuals used for kriging that are a result 
of weak correlation between the soil depth and 
used terrain covariates (Triantafilis et al. 2001). 
The other methods (OK, COK and RE) provided 
good estimation with similar results according to 
the t-test. The reason why COK did not provide 
significantly better results than OK can be the 
location of validation dataset close to the input 
data, while the improvement by covariates is ex-
pressed on larger distances (Wu et al. 2003). The 
values predicted by RE, thought not statistically 
different from the observed data, were in a very 
narrow range compared not only to the real data 
but also to the other prediction methods.

Generally, RE gave the worst results in predic-
tion over the space, because no spatial correlation 
was taken into account. REK failed in prediction 
as well. One reason can be a very low correla-
tion of soil depth and primary terrain attributes, 
which is apparent in this case. This result corre-
sponds to the conclusions of Kalivas et al. (2002) 
and Mueller and Pierce (2003) that REK does not 
provide better results than COK when correlation 
coefficients are low. For that reason it is important 
to know the strength of the relationship between 
the target variables and the auxiliary ones (Kalivas 
et al. 2002). The absence or presence of a spatial 
structure of the regression residuals of the relation 
is also important for choosing among interpola-
tion methods using auxiliary variables (Kalivas et 
al. 2002). Another reason can be overlooking of 
areas with very steep slopes during the sampling; 
they will appear as underestimated values in the 
prediction by REK. COK with slope as covariate 
gave slightly better results of prediction over the 
space than other methods.

The use of auxiliary terrain data slightly improved 
the prediction of soil depth. The best results were 
obtained using co-kriging method with slope as 
covariate. In prediction on validation individual 
sites it succeeded similarly as OK and RE. Moreover, 
it reproduced best the parameters of the original 
dataset, compared to the other three methods. 
The methods based on regression performed the 
worst. Regression-kriging reproduced better the 
variation in the dataset, compared to regression 
alone. The reason why the improvement of the 
prediction was not more significant is a relatively 
low correlation of the predicted soil property with 
used terrain attributes. Further research should 
focus on three problems: 1) how much the size of 
the pixel, from which the terrain parameters were 

generated, influences the correlation, 2) the extent 
of deformation of prediction given by used sampling 
scheme (density of sampling, non-sampled areas), 
and 3) exploitation of other terrain attributes (e.g. 
profile curvature, flow path length, topographic 
wetness indices) for soil depth prediction, that 
may be more spatially correlated.
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