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Path analysis, developed by Wright (1921, 1934), 
is a time-honored statistical technique frequently 
used in agricultural research (Simane et al. 1993, 
Samonte et al. 1998, Wang et al. 1999, Mohammadi 
et al. 2003, Das et al. 2004). This path analysis 
methodology appears to have gained popularity in 
the agricultural investigations following the pub-
lication of Dewey and Lu (1959). There have been 
numerous applications of path analysis in plant 
and soil investigations (Board et al. 1997, 2003, 
Güler et al. 2001, Seker and Serin 2004, Zhang et 
al. 2005, Ige et al. 2007, Zheng et al. 2007).

Besides the classical path analysis, there are some 
additional interpretational tools for a causal system. 
Structural equation modeling (SEM) – a modern 
tool for studying path models – is also used to 
interpret causal systems. Kozak and Kang (2006) 
argued that the extension of SEM to agricultural 
investigations should be useful.

The SEM methodology is not perfect for all causal 
situations; for example, it does not work when 
a model is not identified, which can be for various 
reasons (see, e.g. Bollen 1989, Shipley 2002, sec. 
6.2), for instance because of too small number of 
degrees of freedom of the model. Structural equa-
tion modeling fails to handle causal systems we 

study in this paper because there are not enough 
degrees of freedom to apply a χ2 test, which con-
stitutes a testing part of likelihood-based path 
analysis and SEM. Thus, there is a need for a new 
approach to handle such causal systems.

In the proposed approach, there is one depen-
dent variable and several correlated variables that 
influence the dependent variable; the variables are 
assumed to be co-related through unknown com-
mon causes. Thus, we assume that a double-headed 
arrow (↔) in a path diagram represents a co-rela-
tionship between the two connected variables. The 
co-relationship is assumed to originate from an 
influence of a common cause of the two variables. 
Therefore, this double-headed arrow is not an 
admission of ignorance. The proposed interpre-
tation is based on decomposition of a coefficient 
of multiple linear determination of a response 
variable (R2) into direct and indirect effects of the 
independent variables considered in the causal 
system. The new approach is easy and informa-
tive. It makes the interpretation clearer and the 
selection of traits with the largest influence on 
a response variable easier.

The methodology presented in this paper is 
important for those who intend to apply path 
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analysis in the classical, Wright’s version, that is, 
when SEM cannot be appropriately applied. We 
show what to do and what not to do to apply the 
analysis properly, and when such an analysis may 
be applied. The paper is organized as follows:
– Interpretation of Pathways – here we address 

some issues related to the interpretation of direct 
and indirect effects (which are the main tools 
for interpreting the path diagrams).

– Interpretation Possibilities in Path Analysis 
– here we present theoretical background of 
some new coefficients that should be helpful in 
interpreting path diagrams.

– Example – here we demonstrate the new meth-
odology and interpretation. As an example we 
use an experiment in which effects of three soil 
properties, viz. exchangeable and available po-
tassium content, and total nitrogen content, on 
winter rye (Secale cereale L.) grain yield were 
investigated in an acid-soil environment.

– Conclusions – here we summarize the results 
presented in the paper.

Interpretation of pathways

Consider Figure 1, representing a classical path 
diagram, wherein effects of k independent vari-
ables X1, …, Xk, set at the same ontogenetic level 
(which means they are/may be co-related, but 
none may be a cause or an effect of the other), 
on a dependent/response variable Y, are studied. 
We assume that none of the Xs in the system is 
a cause or an effect of any other X. The only pos-
sible cause-and-effect relationships in the system 
are those between the independent variables and 
the response variable. All further discussion in 
this paper holds true only for the causal system 
defined above. If these assumptions are not ful-
filled, the approach may provide spurious results 
and interpretation.

If one postulates a model under consideration 
without at least one of the co-relation arrows, 
the likelihood-based methodology, i.e. SEM, can 
be applied. For example, we may assume that the 
variables X1 and X2 in Figure 1 are not correlated; 
in that case, the correlation coefficient is set to 
zero. Such information may originate from the 
knowledge of the process being studied.

Figure 1 represents a multiple regression model 
expressed as a path model. Here we cannot employ 
the SEM methodology to test causal implications 
of the model (for detailed discussion, see Shipley 
2002, pp. 127–129). Such an approach cannot 
help decide which of the independent variables 
are causes of the response variable (Shipley 2002, 
p. 130). Therefore, we cannot be sure whether 
or not the assumptions of the model are correct. 
As stated earlier, the case that we are consider-
ing assumes the model to be as follows: Y may 
be an effect of Xs, but an independent variable 
(X) cannot be a cause of another X in the system. 
Here, we would simply like to test whether or 
not the effects of the independent variables are 
significant. This can be done via classical testing 
of partial regression coefficients from the linear 
model Y versus Xs.

Consider the following standardized regression 
model:

 (1)

where: y is the standardized response variable and 
xi (i = 1, …, k) represent the standardized inde-
pendent variables, Piy are the partial regression 
coefficients (the path coefficients) for the model 
E(y|x1, …, xk), and e is a residual variable (often 
denoted by P0).

The classical interpretation in path analysis 
(Figure 1) is based on decomposition of correlation 
coefficients between the response and independent 
variables, that is (Kang and Seneta 1980):

 (2)

where: ryxi and rij are the correlation coefficients 
between the ith independent variable and the re-
sponse variable (y), and the ith and jth independent 
variables, respectively. Thus, the correlation coef-
ficient ryxi is decomposed into terms connected 
with (i) direct effect of Xi on Y (or simply the path 
coefficient Piy) and (ii) k – 1 indirect effects of the 
ith independent variable via jth independent vari-
able on Y, that is, Pjyrij, j = 1, …, k, i ≠ j.

Figure 1. A classical path diagram where a dependent 
variable Y is affected by k independent variables X1, …, 
Xk, which are set at the same ontogenetic level
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Interpreting the indirect effects from Eq. [2] is 
often misleading. Note that Xi is assumed not to 
affect Xj (i, j = 1, …, k, i ≠ j), so the indirect effect 
of Xi via Xj cannot be interpreted as the effect of 
Xi via Xj on Y (see Steel 2005). Such interpretation 
is permissible only if there is a direct path Xi →  Xj, 
which is, however, not the case in the causal situ-
ation represented here. An indirect effect in this 
case is simply the result of a common cause of 
ith and jth independent variables. This common 
cause, say Cij, affects the two independent variables 
simultaneously, which causes them to be correlated. 
Because we do not/cannot measure Cij, we are only 
able to measure the correlation between Xi and Xj 
and the influence of their interaction on the re-
sponse variable Y. The situation described here is 
presented in Figure 2, where the reader acquainted 
with SEM will recognize a simple structural equa-
tion model. Nevertheless, this model does not 
fulfill the basic assumptions; viz. it lacks degrees 
of freedom, and one of the indicator (observed) 
variables (the dependent one) is not caused by 
any latent variable. These two assumptions must 
be fulfilled to make a model identified, which, in 
turn, helps analyse this model via SEM methodol-
ogy; the issues of identification, overidentification, 
and underidentification in SEM are thoroughly 
discussed by Shipley (2002) in chapter 6.

The assessment of contributions of common 
causes of all pairs of independent variables to de-
termination of a response variable is shown below. 
These contributions are sources of indirect effects 
used in the interpretation of pathways presented 
in Figure 1. Hence, we will (indirectly) estimate 
the effects that are presented in Figure 3.

When studying the importance of traits relative 
to their effects on response variable using path 
analysis (Eq. [2]), Board et al. (1997, 2003) listed 
the following criteria for identifying the most 
desirable and important traits: (a) positive cor-
relation between the trait and dependent variable; 

(b) large positive direct effect of the trait on Y; 
and (c) small or non-negative indirect effects via 
other traits. After introducing the new methodol-
ogy for interpreting causal systems under study, 
we provide new corresponding criteria.

Interpretation possibilities in path analysis

Below we show how we can simply interpret 
the causal system presented in Figures 1–3. We 
re-emphasize that our approach is appropriate 
only when a model follows the causal structure 
presented in Figure 1.

Let a and b be two random variables (in our case, 
a and b are two traits), Cov(a, b) be the covariance 
between them, and V(a) and V(b) be the variances 
of a and b, respectively. From Eq. [1], we know 
that the variance of y is:

because V(xi) = 1 and Cov(xi, xj) = rij. Furthermore, 
V(y) = 1 and R2 = 1 – V(e)/V(y) (Quinn and Keough 
2002, p. 92), where R2 is the determination coef-
ficient from Eq. [1]. Hence, we can decompose the 
R2 as follows (Dofing and Knight 1992):

 (3)

The very simple and known equality presented in 
Eq. [3] can be used to interpret the causal system 
under study. From Eq. [3] follow:

Figure 3. Indirect effects whose contribution is used in 
the interpretation of pathways presented in Figure 1

Figure 2. Explanation of common causes of indepen-
dent variables (Xs) that indirectly affect the response 
of variable Y
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(a) Piy
2 – the squared path coefficient connected 

with the influence of the ith trait on Y – is part 
of the determination of the response variable 
that is related to the direct influence of the 
ith trait on the response variable Y. Both posi-
tive and negative direct effects increase R2.

(b) The entity 2PiyPjyrij is related to the common 
cause, Cij, of traits Xi and Xj. Notice that the 
indirect effects Piyrij and Pjyrij differ, but they 
both result from an influence of Cij. There-
fore, we just measure the contribution of Cij 
to determination of the response variable; 
this contribution equals 2PiyPjyrij. The two 
indirect effects under discussion should not be 
treated independently, because both of them 
are the effects of the common cause of the two 
independent variables (Li 1951). Therefore, 
we take Piy

2 as the contribution to R2 of the 
direct effect of the ith trait, and 2PiyPjyrij as the 
contribution of the effect of the common cause 
of the ith and jth traits. This common cause 
can result in the compensation of these two 
traits. Note that the component 2PiyPjyrij can 
be negative and hence can decrease R2. Obvi-
ously, it can happen in two ways; viz. when 
one of the path coefficients (Piy and Pjy) or rij 
is, or all three of them are, negative.

On the basis of the explanations above, the fol-
lowing new coefficient is proposed:

  (i = 1, …, k) (4)

Let us call coefficient Qi the overall contribution 
of the ith trait to the determination of the response 
variable, or simply the contribution of the ith trait 
to R2. An important characteristic of coefficient 
Qi [Eq. 4] is that

Theoretically, it looks possible that Qi < 0 for 
some i; in such a case, the ith trait would decrease 
the determination of the response variable. This 
process is difficult to understand and interpret be-
cause classical statistics does not take into account 
the possibility of decreasing the determination 
– it just assumes that a variable may positively, or 
may not at all, contribute to the determination of 
another variable. Therefore, this peculiar situation 
needs to be studied from the point of view of its 
statistical modeling and interpretation.

Such processes should be recognized via studying 
the decomposition in Eq. [4], and, in a breeding 

program, one should focus on minimizing effects 
that reduce the negative value of Qi. We suggest, 
however, that the situation in which Qi << 0 is only 
theoretical – in practice, it is possible to obtain 
Qi < 0 but with a rather low absolute value.

We now concentrate on the meaning of a negative 
contribution of a common cause to the determi-
nation of the response variable. First, we know 
intuitively that such a contribution is undesirable, 
because we would prefer the determination coef-
ficient of the response variable via studied traits 
to be as large as possible; a negative contribution 
decreases the R2. If the contribution is large, it 
means that both traits involved in this indirect 
effect have a substantial effect on the response 
variable; it also means that they are correlated.

If two traits have a positive direct effect on 
the response variable and they are negatively 
correlated, then the contribution of the com-
mon cause is negative. Here we can point out a 
particular situation that is often encountered in 
practice. Suppose that two variables are strongly 
negatively correlated; the direct effect of one 
variable is positive and large, whereas that of the 
second variable is positive but negligible. The 
classical interpretation of path analysis would 
suggest that the indirect effect of the second 
trait via the first trait is negative and relatively 
large, whereas the new approach would suggest 
that the contribution of the common cause of the 
two traits is negligible. The conclusion is that 
the common cause makes a large (in its absolute 
value) contribution to R2 only if all three coef-
ficients involved in the contribution formula are 
large (irrespective of their sign). Thus, we do not 
have to be concerned about all negative indirect 
effects identified by the classical path analysis; 
some of them may turn out to be unimportant in 
the determination of the response variable, and 
hence we can ignore them.

Another interesting situation is when the coef-
ficients Piy, Pjy, and rij are all negative for some 
pair of i and j (i ≠ j, i, j = 1, …, k). Both indirect 
effects (Piy rij and Pjy rij) are then positive, but the 
contribution of their common cause is negative 
and decreases the determination of the response 
variable. Hence, we note that even positive indi-
rect effects (in the classical meaning of indirect 
effects) can decrease R2 and, in this sense, they are 
not desirable. Note that this situation is unlikely 
to be discovered in the classical interpretation of 
indirect effects. What should we conclude from 
such a result? Our efforts should likely be focused 
on reducing one or both of the direct effects then. 
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If this can be managed, a negative contribution of 
the common cause will be reduced.

Now let us determine which traits are desirable 
and which are undesirable in the determination 
of the result variable. If a trait has a positive di-
rect effect on a response variable, then we prefer 
it to have a positive correlation with traits that 
have a positive direct effect (alternatively, the 
correlation may be negligible). Moreover, such 
a trait should be negatively correlated or uncor-
related with traits having a negative direct effect. 
On the other hand, if a trait has a negative direct 
effect on a response variable, then it should be 
negatively correlated or uncorrelated with traits 
having a positive direct effect, and positively or 
not correlated with those having a negative di-
rect effect. Those are desired indirect effects; all 
other effects are undesirable or unimportant. In 
summary, we simply conclude that desired effects 
are those that represent a positive contribution of 
a common cause of any two traits. In the event 
of an undesirable situation, a contribution of the 
common cause of two traits that are involved in 
the undesirable indirect effect is negative.

To make the analysis clear, besides the classical 
path analysis table (see Williams et al. 1990), values 
of various quantities from Eq. [4] can be included. 
Let us recall that, in the classical analysis of path-
ways, one should avoid interpreting an indirect 
effect as an effect of an independent variable via 
another variable. An example of table construc-
tion for the new interpretation is presented in the 
next section.

We are now able to define new criteria for identi-
fying relative importance of traits in determination 
of a response variable, alternative to the criteria 
given by Board et al. (1997). The new general 
criteria are:
(a) Overall contribution Qi of the ith trait to the 

determination coefficient of the response vari-
able; the larger the overall contribution of a 
trait, the more important the trait in determi-
nation of the dependent variable.

(b) A correlation between the trait and the re-
sponse variable (as in Board et al. 1997); [cor- 
relation coefficient in our situation is a meas-
ure of an overall effect of the ith trait on Y (see 
Shipley 2002, p. 127)]; for a trait that would be 
highly desirable at a high level, this correlation 
should be positive.

(c) Direct effect of the trait on the response vari-
able (as in Board et al. 1997); for a trait that 
would be highly desirable at high level, the 
direct effect should be positive.

(d) Contributions of common causes of the ith trait 
with other traits; for a trait that would be high-
ly desirable at a high level, the contributions 
of common causes with other traits should be 
positive (or nonexistent).

A summary table for the analysis (interpreta-
tion) via which we are able to show values of the 
coefficients involved in each criterion is provided. 
However, such a table usually does not provide all 
detailed information needed for interpretation; in 
some cases (especially when the number of vari-
ables in causal system is large and the variables are 
correlated), additional tables providing detailed 
information may be required. On the basis of the 
tables, we are able to draw conclusions about the 
importance of a trait in determining the response 
variable as well as about the direction of its influ-
ence. Furthermore, on such a basis, we can deter-
mine which traits we should concentrate on, and 
at what level we should try to set them. Moreover, 
we can provide a detailed explanation of a whole 
process of determination of the resultant variable 
by the traits under study.

When a particular criterion is identified, we 
should decide whether or not the overall con-
tribution of a trait is important (we do not have 
to decide whether it is positive or negative). It is 
done via its magnitude (not statistical testing – we 
know that even a coefficient that significantly dif-
fers from zero may be unimportant). Therefore, 
understanding the nature of the problem/situation 
under consideration would be very helpful here.

The most important criterion is the first one. 
A near-nil Qi represents no contribution of the 
trait under consideration to R2. The next most 
important criteria are the second and third ones. 
The fourth criterion is probably the least important, 
especially when the first three criteria prevail. In 
general, we can state that the combined interpre-
tation in path analysis, that is, interpretation that 
bridges the classical and proposed approaches, 
yields more detailed and exhaustive overall picture 
of the process of formation of a response vari-
able, in comparison with classical path analysis. 
Following the discussion of Rencher (1998, p. 210) 
on interpretation of discriminant functions and 
determining the contribution of each variable, 
classical interpretation in path analysis concerns 
independent variables influencing response vari-
able, whereas our approach concerns contributions 
of the independent variables to the determination 
of the response variable. Hence, these two inter-
pretations are very different.
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An example

A winter-rye experiment was carried out in 
2002 at the Experimental Station of Faculty of 
Agriculture and Biology of the Warsaw Agricultural 
University, which was established in 1922 and is 
located in Skierniewice (51°58’ latitude, 20°10’ 
longitude, and 120 m above sea level). The climate 
of the Experimental Station is characterized by 
a mean annual temperature of 7.9°C (10.1°C in 
2002) and an annual rainfall of 527 mm (506.3 mm 
in 2002), evenly distributed during the growing 
season, except in April. In April 2002, rainfall was 
about 10 mm. The trial was conducted on stagnic 
luvisol-loam sandy soil containing 6–8% clay in 
the plow layer.

A long-term fertilizer experiment was established 
during 1922–1924, and comprised three groups of 
fields: A1–A4, with treatments 0, CaNPK, NPK, 
PK, NP and NK and with ammonium nitrate as 
the source of nitrogen; A5–A8, with treatments 
Ca, CaNPK, NPK, CaPK, CaNP and CaNK and 
with the same nitrogen fertilization as for A1–A4 
fields; AF1–AF2 fields with the same fertilizer 
treatments as for A1–A4 fields, but fertilized with 
ammonium sulfate. The control treatments (0 or 
Ca) had four replications, and the others had three 
replications. The doses of all nutrients were the 
same for all fields and amounts: N = 90 kg/ha, 
P = 26 kg/ha (superphosphate) and K = 91 kg/ha 
(potassium chloride). CaO at a rate of 1.6 t/ha was 
applied every four years on treatments designated 
to receive Ca. On all these fields, arbitrary crop 
rotation without legumes was practiced. Most 
fields were not fertilized with organic manures; on 
fields A4, A5 and AF2, farmyard manure had been 
applied every 3 to 4 years since 1992–1994.

In the present work, only the fertilizer treatments 
with acid and strongly acid soil are considered (we 
have chosen those plots where pH values were lower 

than 5.5). There were 47 such plots from the treat-
ment combinations CaNPK, NPK, PK, NP and NK 
from fields A2, A4, AF1 and AF2, and NPK from A5 
and A8 fields. These plots were treated as a sample 
from a population of an acid-soil environment.

The study considered grain yield of rye cv. Dań- 
kowskie Złote. Soil properties were measured af-
ter harvesting the crop. Soil analyses comprised, 
among others, the following properties: pH in 
KCl (1 mol/dm3), Hh – hydrolitic acidity (extrac-
tion with calcium acetate, 1 mol/dm3, pH 8.2), 
exchangeable Al (1 mol/dm3 KCl), exchangeable 
cations content: Ca, Mg, and K (1 mol/dm3 am-
monium acetate), available P and K (Egner-DL 
method), and total N content (measured using 
the modified Kjeldahl method).

We assumed that the soil properties studied 
are set at the same ontogenetic level. Some might 
criticize such an assumption and argue that there is 
no evidence that soil properties are correlated and 
not connected via other causal structure. In our 
opinion, soil properties are modeled via the sys-
tem under consideration, and co-relations among 
them are the result of their common causes. There 
is no evidence or even circumstantial evidence 
that any of the soil properties studied is a cause 
or an effect of any other property included in the 
causal system.

The backward stepwise selection was used to 
select the variables that significantly affected grain 
yield. Three soil properties were selected: available 
(Kav) and exchangeable potassium (Kexch) content, 
and total nitrogen content (Ntot).

Hereafter, we use just the above-noted three se-
lected independent variables, omitting the others 
(as they are assumed not to determine grain yield). 
Table 1 contains summary statistics for grain yield 
and selected soil properties. Table 2 represents 
a correlation matrix for the traits. Grain yield 
was significantly correlated with total N content 

Table 1. Summary statistics (mean values – MV, standard 
deviations – SD, and coefficients of variation – CV) 
for grain yield and selected soil properties

Variable MV SD CV (%)

Grain yield (t/ha) 2.96 0.88 29.9

Kexch (mmol/kg) 2.92 0.79 27.1

Kav (mg/kg) 42.85 13.72 32.0

Ntot (g/kg) 0.45 0.05 10.6

Kexch – K exchangeable, Kav – K available, Ntot – total 
nitrogen content

Table 2. Correlation matrix for winter rye grain yield 
and selected soil properties

Grain yield Kexch Kav

Kexch –0.31* 1

Kav 0.04 0.71** 1

Ntot 0.76** –0.14 –0.01

Kexch – K exchangeable, Kav – K available, Ntot – total 
nitrogen content 
*, **significant at 0.05 and 0.01 probability level, respec-
tively
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(a strong positive correlation) and exchangeable K 
(a weak negative correlation). Among the selected 
soil properties, only exchangeable and available 
K content were significantly correlated (a strong 
positive correlation).

Table 3 contains results of path analysis for the 
studied model. The largest positive direct effect on 
grain yield was recorded for Ntot. Kexch influenced 
yield negatively. The lowest influence on yield was 
detected for Kav; it was a positive direct effect. 
A large direct effect of Ntot led to a large correla-
tion between this soil property and grain yield (no 
meaningful indirect effects of this variable were 
detected). A fairly large negative direct effect of 
Kexch was counterbalanced by the positive indirect 
effect of the common cause of this variable and 
Kav. The common cause of this variable and Kexch 
almost completely compensated the positive direct 
effect of Kav; it resulted in the near-zero correla-
tion between Kav and grain yield.

Tables 4 and 5 contain interpretations according 
to the proposed approach. In Table 4, the decom-
position of yield determination (R2) into compo-
nents relative to direct and indirect effects of the 
independent variables on yield is presented. The 
largest contribution to yield determination was that 
of the direct effect of Ntot. Next, a large contribu-
tion was detected for the common cause of two 
forms of potassium (exchangeable and available), 

but this component was negative and decreased 
the yield determination. The direct effect of Kexch 
contributed substantially to R2, too. Contribution 
of the direct effect of Kav was positive but not large. 
Contributions of the common causes of Ntot and 
both potassium forms (especially the available 
one) were rather small.

Table 5 represents a summary for the whole 
analysis. Let us go over the proposed criteria for 
identifying important traits that determine the 
response variable. The first trait, exchangeable 
potassium content, contributed little to yield de-
termination, was negatively correlated with grain 
yield, had a relatively large negative direct effect on 
grain yield, and the contributions of its common 
causes with the other traits were, in summary, 
negative. The second trait, available potassium 
content, had near-nil overall contribution to R2, 
was not correlated with yield, had a relatively large 
positive direct effect on yield, and the contributions 
of its common causes with the other traits were 
negative or non-existent. Total nitrogen content 
had a large positive direct effect and a large overall 
contribution to R2, was positively correlated with 
grain yield, and the contributions of its indirect 
effects were negligible.

The conclusion from the combined path analysis 
is that mainly total nitrogen content, especially 
the direct effect of this soil property, determined 
winter-rye grain yield. Within the range of total 
nitrogen content recorded in our study, we would 
want to maximize it. The exchangeable potassium 
content determined grain yield, but to a noticeably 
lesser extent. In the case of this soil property, we 
would want to achieve a lowest value (in the range of 
this soil property that occurred in the experiment, 
of course). Available potassium content was the soil 
property that generally weakly determined yield 
in spite of its positive direct effect on it; actually, 
a value of the available potassium content would 
have no influence on final grain yield.

The new interpretational approach to infer from 
causal systems from Figure 1 is a tool that can 
enrich the classical interpretation of pathways. It 
is based on the assumption that two independent 

Table 3. Path analysis for winter rye grain yield as affected 
by selected soil properties: exchangeable (Kexch) and 
available (Kav) K content, and total N content (Ntot)

Kexch Kav Ntot

Kexch –0.492** –0.350 0.070

Kav 0.283 0.398** –0.004

Ntot –0.098 –0.007 0.685**

Corr. with 
grain yield (Y) –0.31* 0.04 0.76**

*, **significant at 0.05 and 0.01 probability level, respec-
tively (for direct effects and correlation coefficients); 
italics is used for direct effects

Table 4. Decomposition of winter rye grain yield determination (R2)

Effect P1
2 P2

2 P3
2 2P1P2r12 2P1P3r13 2P2P3r23 R2†

Value 0.242 0.158 0.469 –0.279 0.096 –0.005 0.682

†P1
2 + P2

2 + P3
2 + 2P1P2r12 + 2P1P3r13 + 2P2P3r23 = R2
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variables in the causal system are correlated through 
a common cause that affects the two variables; it 
is, however, an inappropriate approach when this 
assumption is not met. By applying the proposed 
procedure, we can assess the contributions to the 
determination of the response variable of the inde-
pendent variables from the model under consider-
ation as well as the common causes of each pair of 
the independent variables. Researchers attempting 
to study a causal system should be aware of SEM 
methodology, which is the most powerful tool for 
studying causal structures. Nevertheless, if SEM 
cannot be applied for any reason and  the model  
of study represents  the model considered in this 
paper, our methodology presented above may be 
applied in order to enrich one’s interpretation.

REFERENCES

Board J.E., Kang M.S., Bodrero M.L. (2003): Yield com-
ponents as indirect selection criteria for late-planted 
soybean cultivars. Agron. J., 95: 420–429.

Board J.E., Kang M.S., Harville G. (1997): Path analyses 
identify indirect selection criteria for yield of late-
planted soybean. Crop Sci., 37: 879–884.

Bollen K.A. (1989): Structural Equations with Latent 
Variables. John Wiley and Sons, New York.

Das M.K., Fuentes R.G., Taliaferro C.M. (2004): Genetic 
variability and trait relationships in switchgrass. Crop 
Sci., 44: 443–448.

Dewey D.R., Lu K.H. (1959): A correlation and path-
coefficient analysis of crested wheatgrass seed pro-
duction. Agron. J., 51: 515–518.

Dofing S.M., Knight C.W. (1992): Alternative model 
for path analysis of small-grain yield. Crop Sci., 32: 
487–489.

Güler M., Sait A.M., Ulukan H. (2001): Determining 
relationships among yield and some components 
using path coefficient analysis in chickpea (Cicer 
arietinum L.). Eur. J. Agron., 14: 161–166.

Ige D.V., Akinremi O.O., Flaten D.N. (2007): Direct and 
indirect effects of soil properties on phosphorus re-
tention capacity. Soil Sci. Soc. Am. J., 71: 95–100.

Kang K.M., Seneta E. (1980): Path analysis: An exposi-
tion. In: Krishnaiah P.R. (ed.): Developments in Sta-
tistics. Vol. 3. Academic Press, New York: 217–246.

Kozak M., Kang M.S. (2006): Note on modern path 
analysis in application to crop science. Commun. 
Biometry Crop Sci., 1: 32–34.

Li C.C. (1951): Population Genetics. The University of 
Chicago Press, Chicago.

Mohammadi S.A., Prasanna B.M., Singh N.N. (2003): 
Sequential path model for determining interrela-
tionships among grain yield and related characters in 
maize. Crop Sci., 43: 1690–1697.

Quinn G.P., Keough M.J. (2002): Experimental Design 
and Data Analysis for Biologists. Cambridge Univer-
sity Press, Cambridge.

Rencher A.C. (1998): Multivariate Statistical Inference 
and Applications. John Wiley and Sons, New York.

Samonte S.O.P., Wilson L.T., McClung A.M. (1998): 
Path analyses of yield and yield-related traits of fifteen 
diverse rice genotypes. Crop Sci., 38: 1130–1136.

Seker H., Serin Y. (2004): Explanation of the relation-
ships between seed yield and some morphological 
traits in smooth bromegrass (Bromus inermi Leyss.) 
by path analysis. Eur. J. Agron., 21: 1–6.

Table 5. Checklist of new criteria for three studied soil properties in determining winter rye grain yield

Selection criterion
Kexch Kav Ntot

value +/–† value +/–† value +/–†

Qi (overall effect on grain yield) 0.15 ni. 0.02 ni. 0.52 +

Correlation with grain yield –0.31 – 0.04 ni. 0.76 +

Direct effect –0.49 – 0.40 + 0.69 +

Undesired common causes‡ –0.279 – –0.284 – –0.005 ni.

Desired common causes§ 0.096 ni. 0 ni. 0.096 ni.

Final decision little important trait 
desired at – level not important trait important trait 

desired at + level

Kexch – K exchangeable, Kav – K available, Ntot – total nitrogen content 
†+ and – mean that the particular criterion is at its high and low level, respectively; ni. means that the criterion 
is not important 

‡sum of desired contributions of common causes with other traits 
§sum of undesired contributions of common causes with other traits



PLANT SOIL ENVIRON., 53, 2007 (6): 267–275 275

Shipley B. (2002): Cause and Correlation in Biology: 
A User’s Guide to Path Analysis, Structural Equa-
tions and Causal Inference. Cambridge University 
Press, Cambridge.

Simane B., Struik P.C., Nachit M.M., Peacock J.M. 
(1993): Ontogenetic analysis of yield components 
and yield stability of durum wheat in water-limited 
environments. Euphytica, 71: 211–219.

Steel D. (2005): Indeterminism and the causal Markov 
condition. Brit. J. Philos. Sci., 56: 3–26.

Wang G., Kang M.S., Moreno O. (1999): Genetic analy-
ses of grain-filling rate and duration in maize. Field 
Crops Res., 61: 211–222.

Williams W.A., Jones M.B., Demment M.W. (1990): 
A concise table for path analysis statistics. Agron. J., 
82: 1022–1024.

Wright S. (1921): Correlation and causation. J. Agr. 
Res., (Wash., D.C.), 20: 557–585.

Wright S. (1934): The method of path coefficients. Ann. 
Math. Stat., 5: 161–215.

Zhang H., Schroder J.L., Fuhrman J.K., Basta N.T., 
Storm D.E., Payton M.E. (2005): Path and multiple 
regression analyses of phosphorus sorption capacity. 
Soil Sci. Soc. Am. J., 69: 96–10.

Zheng Z., Simard R.R., Lafond J., Parent L.E. (2007): 
Pathways of soil phosphorus transformations after 
8 years of cultivation under contrasting cropping 
practices. Soil Sci. Soc. Am. J., 66: 999–1007.

Received on March 7, 2007

Corresponding author:

Dr. Ing. Marcin Kozak, Warsaw Agricultural University, Faculty of  Agriculture and Biology, Department of Biom-
etry, Nowoursynowska 159,  02 787 Warsaw, Poland
e-mail: m.kozak@omega.sggw.waw.pl

mailto:m.kozak@omega.sggw.waw.pl

