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Soil contamination with heavy metals will lead 
to losses in agricultural yield and hazardous health 
effects as they enter into the food chain (Schickler 
and Caspi 1999). The effects of heavy metals on 
cellular system have received a great deal of at-
tention due to the increasing exposure of living 
organisms to these metals in the environment. 
Mercury (Hg) is one of the major pollutants in 
soils because of the annual import of toxic Hg into 
the agricultural lands (Patra and Sharma 2000). In 
addition, Hg is a highly toxic non-essential element 
and its dispersion in the environment is considered 
to be a global problem for its persistent character. 
Compared with Cd, Co, Cu, Pb, and Zn, Hg has 
the greatest inhibitory effects on seed germina-
tion, root elongation, and hypocotyl and coleoptile 
growth in wheat (Munzuroglu and Geckil 2006). 
It was found that Hg released to soils remains 
mainly in the solid phase through adsorption onto 
sulfides, clay particles and organic matters. The 
predominant form of Hg in agricultural soils is 
the ionic form (Hg2+) (Han et al. 2006).

The interaction between Hg and plant systems 
is very important because Hg has largely been 
employed in seed disinfectants, in fertilizers and in 
herbicides (McLaughlin et al. 1996). It was found 
that mercuric ions are able to induce oxidative 
stress by triggering generation of reactive oxygen 
species (ROS), e.g. superoxide radical, hydrogen 
peroxide, and hydroxyl radical in plants (Patra 
and Sharma 2000, Israr and Sahi 2006).

Measurement of chlorophyll activity is a method 
usually used to monitor oxidative stress in green 
plants by direct measurement of chlorophyll or 
chlorophyll fluorescence (KrishnaRaj et al. 2000, 
MacFarlane 2003). The contaminant metals often 
accumulate in considerable amounts in plant tis-
sues, and the ability of plants to absorb Hg is well 
established (Hitchcock and Zimmermann 1957). 
Previous studies indicate that Hg remains mostly 
confined to roots when it is taken up by roots in 
pea plants (Beauford et al. 1977).

It was reported that intracellular Ca2+ levels are 
linked to physiological processes in plants (Felle 
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1988, Gehring et al. 1990, Irving et al. 1992). Ca2+ 
can act as a second messenger in response to most 
external stimuli in plants (Bush 1995, Webb et al. 
1996). However, the previous studies concerned 
mainly the activities of antioxidant enzymes and 
chlorophyll. There are fewer studies dealing with 
the research of the relationship between Ca ab-
sorption and bioaccumulation of Hg in plants. 
Thus it is necessary to investigate whether the 
bioaccumulation of Hg influences Ca absorption 
in wheat leaves. In view of these facts, the aims 
of the present studies are to investigate the effect 
of Hg on chlorophyll content in winter wheat var. 
jinan No. 17. Moreover, Ca levels and bioaccumu-
lation of Hg in wheat leaves were studied with the 
technique of inductively coupled plasma sector 
field mass spectrometer (ICP-SF-MS).

Materials and methods

Soil characterization and contamination. Soil 
samples were collected from the top layer (0–30 cm) 
located in the campus of the Shandong University 
of Technology. Then the soil was sieved to < 4 mm, 
air-dried at 35°C for 72 h, and subjected to physi-
cochemical characterization. The soil was clay 
loam, with pH 5.8, an organic matter content of 
5.01%, a total nitrogen content of 0.32%, a C/N 
ratio of 8.3, a phosphorus content of 21.8 mg/kg 
and an electrical conductivity of 0.08 dS/m. The 
composition of modified nutrient solution was 
carbamide and K2H2PO4, and their concentra-
tion is 100 and 300 mg/kg in the dry weight soil, 
respectively (Yang et al. 2007).

Subsequently, the soil was artificially contami-
nated with Hg as follows: 0, 100, 200, and 500 mg 
Hg/kg in the dry weight soil as HgCl2. The metal-
polluted and control soils were then stored at room 
temperature for one week.

Experimental design and plant growth. The 
seeds of winter wheat var. jinan No. 17 were steri-
lized in 3% formalin for 5 min followed by proper 
washing with double distilled water and soaked 
in water overnight. Then the soaked seeds were 
sown in earthen pots with metal polluted and 
control soils, each in three replicates. Seeds were 
sown in each pot to a depth of 0.5 cm and watered 
daily until seed germination. The whole experi-
ment was carried out in a house conditions with 
natural light, day/night temperature of 26/20°C 
and day/night humidity of 70/90%.

Analysis of chlorophyll. Plants were collected 
at the second week after seed germination. Then 

the plants were collected every week. Leaf samples 
were harvested and the fresh weights (FW) were 
recorded. Then leaf samples were treated with 
3 ml dimethyl sulphoxide in the presence of poly-
vinylpolypyrrolidone at 60°C for 2 h in the dark. 
Photosynthetic pigments of all of the samples were 
extracted and chlorophyll concentrations were 
calculated using the extinction coefficients and 
equation given by Barnes et al. (1992). A spectro-
photometer is used at two wavelengths (648.2 and 
664.9 nm) for maximum absorption of chlorophyll 
a and b, respectively.

Chlorophyll a = 14.85 A664.9 – 5.14 A648.2
Chlorophyll b = 25.48 A648.2 – 7.36 A664.9
Total chlorophyll – (a + b) = 7.49 A664.9 + 20.34 
A648.2
Ca and Hg analysis. For analysis of leaf samples, 

leaves were washed thoroughly with deionized 
water and a microwave-assisted digestion proce-
dure was applied. Approximately 0.3 g of sample 
(dry weight, DW) was weighed into Teflon bombs. 
Then, 10 cm3 of HNO3 was added and the sam-
ples were digested. After digestion, samples were 
transferred quantitatively into polypropylene tubes 
and filled up to 10 cm3. Subsequently, Ca and Hg 
in the digest were determined using ICP-SF-MS 
(Agilent, Japan) with external calibration using 
114.8In and 102.9Rh as an internal standard.

Statistical analyses. Statistical analyses were 
performed using SPSS (version 13.0 for Windows). 
Six replicates were taken in analysis of chlorophyll, 
and three replicates were taken in analysis of Ca 
and Hg. The significant differences (P < 0.05) 
between treatments and control were statistically 
evaluated by standard deviation and Student’s 
t-test methods.

Results and discussion

Heavy metals have been given of particular 
concern because they are frequently present at 
elevated concentrations in biosolids. In addition, 
heavy metals cannot decompose in the environ-
ment and can be translocated into plants and 
further transferred into animal and human food 
chains (Sloan et al. 2001, Oliver et al. 2005). It 
was found that mercury is one of the most toxic 
heavy metals and has the ability to bioaccumulate 
(Kelly et al. 2006).

As one of the most important plant organs, leaves 
play a significant role in capturing light and mak-
ing food via photosynthesis. Photosynthesis is one 
of the most sensitive processes. Detailed studies 
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indicate that heavy metals interfere with chloro-
phyll synthesis either through direct inhibition of 
an enzymatic step or by inducing deficiency of an 
essential nutrient (van Assche and Clíjsters 1990). 
It was found that Hg2+ can induce the inhibition of 
protochlorophyllide photoreduction in homoge-
nates of dark-grown wheat leaves (Solymosi et al. 
2004). Moreover, Hg affected P and Mn status in 
plants, reduced chlorophyll concentration and 
increased malondialdehyde (MDA) and thiol levels 
(Moreno-Jiménez et al. 2009).

The results presented in this article showed 
that the content of chlorophyll a, chlorophyll b 
and total chlorophyll was increasing with the in-
creasing concentration of Hg on the fourteenth 
day (Table 1). There was a significant difference 
between the treated groups and the control group. 
However, the content of chlorophyll a, chlorophyll 
b and total chlorophyll was decreasing with the in-
creasing concentration of Hg on the twenty-eighth 
and thirty-fourth days (Table 1). Moreover, there 
was a significant difference between the treated 

groups and the control group. On the twenty-first 
day, the content of chlorophyll a, chlorophyll b 
and total chlorophyll was significantly higher than 
the control at 100 and 200 mg Hg/kg, while sig-
nificantly lower than the control at 500 mg Hg/kg 
(Table 1). Our results indicate that both low and 
high concentration of Hg will stimulate chloro-
phyll synthesis at early stages of the wheat growth. 
However, at later stages of the wheat growth, not 
only low but also high concentration of Hg will 
inhibit chlorophyll synthesis. Previous studies 
indicate that Hg2+ cannot significantly affect plant 
growth at low levels. However, the high level of 
Hg2+ becomes strongly phytotoxic to cells and can 
induce visible injuries and physiological disorder 
(Ortega-Villasante et al. 2005, Zhou et al. 2007). 
In plants, mercury ions may substitute metal ions 
in photosynthetic pigments causing a decrease in 
photosynthesis rates (Xylander et al. 1996, Kupper 
et al. 1998). Our results also indicate that the high 
level of Hg2+ is strongly phytotoxic to cells and 
can decrease the chlorophyll content.

It was shown that Hg2+ can readily accumulate 
in higher plants (Wang and Greger 2004, Israr et 
al. 2006). Our results indicate that the concentra-
tion of Hg in wheat leaves was increasing with 
the increasing concentration of Hg on the thirty-
fourth day (Figure 1). Furthermore, there was a 
significant difference between the treated groups 
and the control group (Figure 1). The results of 
some studies suggest that Hg can bind to nucleic 
acids and cause inhibition of spindle formation 
and other chromosomal alterations and finally cell 

Table 1. Content of chlorophyll in the leaves of wheat 
treated with different concentrations of Hg

Hg 
(mg Hg/kg)

Chlorophyll in leaves (mg/g FW)

Ca Cb Ca + b

Day-14
0 0.71 ± 0.01a 0.19 ± 0.013a 0.90 ± 0.02a

100 0.79 ± 0.01b 0.23 ± 0.01b 1.02 ± 0.01b

200 1.14 ± 0.01c 0.33 ± 0.02c 1.46 ± 0.01c

500 1.19 ± 0.01c 0.36 ± 0.01c 1.55 ± 0.01c

Day-21
0 1.21 ± 0.01a 0.32 ± 0.01a 1.53 ± 0.01a

100 1.37 ± 0.03b 0.43 ± 0.02b 1.81 ± 0.01b

200 1.54 ± 0.03c 0.49 ± 0.03b 2.03 ± 0.01c

500 1.11 ± 0.02d 0.26 ± 0.01c 1.37 ± 0.01d

Day-28
0 1.32 ± 0.02a 0.40 ± 0.02a 1.72 ± 0.01a

100 1.29 ± 0.01b 0.35 ± 0.02b 1.64 ± 0.01b

200 1.19 ± 0.01c 0.31 ± 0.01b 1.50 ± 0.02c

500 1.10 ± 0.01d 0.26 ± 0.01c 1.36 ± 0.01d

Day-34
0 1.23 ± 0.01a 0.42 ± 0.02a 1.65 ± 0.01a

100 1.19 ± 0.01b 0.36 ± 0.01b 1.55 ± 0.01b

200 1.10 ± 0.02c 0.29 ± 0.02c 1.39 ± 0.01c

500 0.82 ± 0.02d 0.23 ± 0.02c 1.05 ± 0.01d

Values are the mean of six replicates and different let-
ters within columns indicate significant differences 
(P < 0.05)
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Figure 1. The accumulation of Hg in wheat leaves. Verti-
cal bars represent standard deviation of the mean (n = 
3). The wheat grew in the soil containing 0, 100, 200, 
and 500 Hg mg/kg soil for 34 days. Different letters in 
the figure indicate significant differences (P < 0.05)
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division (De Flora et al. 1994, Cavallini et al. 1999). 
Our results also show that contaminant Hg can 
accumulate in considerable amounts in the plant 
tissue before they produce visible phytotoxic and 
oxidative damage effects.

It is well known that Ca2+ regulates numerous physi-
ological cellular phenomena as a second messenger 
as well as triggering pathological events such as cell 
injury and death. Intracellular Ca2+ levels are linked to 
physiological processes in plants (Felle 1988, Gehring 
et al. 1990, Irving et al. 1992). Calcium ions can act 
as a second messenger in responses to most exter-
nal stimuli in plants (Bush 1995, Webb et al. 1996). 
Our results indicate that Ca in the leaves of wheat 
was increasing with the increasing concentration of 
Hg on the thirty-fourth day (Figure 2). There was 
a significant difference between the treated groups 
and the control group (Figure 2). Thus Hg stress may 
affect Ca levels in wheat leaves, and can accelerate 
Ca absorption in wheat. However, since there was 
no significant difference between the treated groups 
(Figure 2), the reason why the different levels of Hg2+ 
have no significant effects on Ca levels needs to be 
further researched.

In summary, this experiment analyzes the effects 
of Hg on winter wheat exposed to toxic Hg2+ con-
centration in long-term experiments. The study 
comprised a range of Hg concentrations from 100 to 
500 mg Hg/kg based on the previous observations. 
At early stages of the wheat growth, both low and 
high concentration of Hg stimulated chlorophyll 
synthesis, and inhibited chlorophyll synthesis at 
later stages of the wheat growth. Furthermore, Ca 
and Hg in wheat leaves were increasing with the 

increasing concentration of Hg on the thirty-fourth 
day with the technique of ICP-SF-MS. The results 
indicate that Hg can accelerate the absorption of 
Ca in winter wheat and Hg stress may affect Ca 
levels in wheat leaves.
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Figure 2. The levels of Ca in wheat leaves. Vertical 
bars represent standard deviation of the mean (n = 3). 
The wheat grew in the soil containing 0, 100, 200, and 
500 Hg mg/kg for 34 days. Different letters in the figure 
indicate significant differences (P < 0.05)
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