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Risk elements accumulation in vegetable, par-
ticularly in areas irrigated with wastewater, may 
by a threat to human health. Soil contamination 
by risk elements due to non-decay by time and 
long biological half-lives has been severely consid-
ered. Main sources of risk elements in agricultural 
soils are usually various, such as irrigation with 
wastewater; application of agricultural fertilizers, 
pesticides and organic manures; disposal of urban 
or industrial wastes; mining and smelting process; 
atmospheric pollution resulting from motor ve-
hicles and combustion of fossil fuels (Nicholson 
et al. 2003). Due to long-term irrigation with do-
mestic sewage and industrial effluent containing 
heavy metals, contamination in agricultural soils 
has become significantly higher than the back-
ground value (Rodriguez et al. 2008). Because of 
the low precipitation and high evaporation rates in 
a semi-arid climate, the use of urban and industrial 

wastewater in agricultural fields is unavoidable. 
Deterioration of environmental conditions and 
increasing reliance on agrochemicals have led to 
a growing public concern over the potential accu-
mulation of heavy metals and other contaminants 
in agricultural soils (Nicholson et al. 2003).

High concentration of heavy metals in agricul-
tural soils affect the crops output and quality. It 
deteriorates growth, morphology and metabolism 
of microorganisms in soils (Giller et al. 1998). In 
recent years, with the rapid industrialization and 
urbanization, heavy metal contamination has be-
come an important issue in many countries (Chen 
et al. 2008). Iran and other countries located in the 
arid belt of the Earth face severe water scarcity.

In order to partially meet the demand for water 
of their large urban populations, the governments 
in these countries are compelled to re-use a sig-
nificant volume of urban and industrial wastewater 
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(contaminated by heavy metals) in agriculture 
(Yargholi 2008). The metropolis of Tehran produces 
about 6 m3/s of wastewater, which is used for the 
irrigation of crops and vegetables in more than one 
thousand square kilometers of agricultural fields 
located in the plains of southern Tehran. Sewage 
wastes from different areas of Tehran have been 
transferred to southern areas of the city along 
two rivers for 70 years. In this situation, several 
vegetable species which are the main part of the 
daily diet of Tehran’s population have been pro-
duced using domestic and industries wastewater 
since many years. Thus, due to rapid develop-
ment of urbanization and industrialization, soil 
pollution with risk elements in southern Tehran 
has become an urgent problem. Long-term use of 
wastewater resulted in the accumulation of risk 
elements in soil and their transfer to various crops 
under cultivation, with levels of contamination that 
exceed permissible limits. There is no legislation 
regarding metal concentrations in agricultural and 
urban soils in Iran. A few studies were done on 
the metal levels in agricultural soils that received 
wastewater (Salmasi and Tavassoli 2006). Heavy 
metals pollution in soil is commonly estimated 
by interpolating concentrations of heavy metals 
sampled at point locations, so that each heavy 
metal is represented in a separate map (Webster 
and Oliver 2001). The methods of geostatistics use 

the stochastic theory of spatial correlation both 
for interpolation and for apportioning uncertainty 
(Goovaerts 1997). Moreover, geostatistics has been 
successfully applied in investigating and mapping 
soil pollution by heavy metals, in recent years 
(Romic and Romic 2003).

Geostatistics provides a set of statistical tools for 
incorporating spatial coordinates of observations 
in data processing (Goovaerts 1999). Recent stud-
ies attempted to apply both multivariate analyses 
and GIS techniques in agricultural soil studies 
(Facchinelli et al. 2001). There are few detailed 
studies that were undertaken to determine the risk 
element contents in agricultural soils in Iran, thus 
the aim of the present study is to determine; (1) 
Metal distribution through geostatistical analysis 
to identify their spatial patterns in the region, (2) 
Identification of the natural or anthropic sources 
of individual metals in the soils using geostatisti-
cal and multivariate statistical analyses and (3) 
Mapping the environment quality and risk assess-
ment in agricultural soils in south of Tehran.

MATERIAL AND METHODS

Study area. The study area is located in a vegetable
planting region (35°33'39'' ~35°24'15''N, 51°35'29'' 
~ 51°25'03''E) situated in southern Tehran with an 

Figure 1. Land use map and sam-
pling sites of the study area
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area of 800 km2 (Figure 1). This zone is character-
ized by mild-cold winters and semi-arid continental 
climate with an average annual rainfall of 232 mm 
(for the period 1993–2003, in Mehrabad Station), 
with a minimum and a maximum average annual 
temperature of –4 and 42°C. The agricultural lands
in south of Tehran are well known for vegetable 
production. The main soil types in the study area are
Typic Calciorthids and Natric Camborthids. Most 
the agricultural lands were irrigated with wastewater 
and sewage from Tehran city. The large population
(about 10 million) and dense industrial activity in 
Tehran discharged a great amount of wastewater 
into the urban environment.

Sampling and chemical analysis. A total of 106 
surface soil samples (0–25 cm in depth) were taken 
corresponding to agricultural lands basis of a land 
use map at 1:100.000 scale in July 2008. Heavy 
metals from anthropogenic sources are mainly 
accumulated at surface and most of the roots of 
vegetable crops are located down at this depth (Ross 
1994). Sampling sites were selected randomly. A 
composite soil sample consisted of 5-subsamples 
obtained using stainless steel hand auger at regu-
lar distances from each other. Subsamples were 
mixed into one composite sample for each soil and 
were analyzed in triplicate. The coordinations of 
the sample locations were recorded with a global 
positioning system (GPS) receiver. About 1 kg of 
each sample was stored in a polyethylene pack-
age and transported to the laboratory. The soil 
samples were air-dried for several days at room 
temperature (20–22°C), ground and sieved to 
2 mm for analysis of their properties. Soil samples 
were digested by aqua regia with a mixture of 
nitric and hydrochloric acids according to the 
3050B method of the United States Environmental 
Protection Agency (USEPA 1996). As and Hg were 
determined with an AFS dual-channel atomic 
fluorescence. The concentrations of Pb, Mo, and 
Be were determined using inductively coupled 
plasma atomic emission spectroscopy (ICP-ES; 138 
Ultrace; Jobin Yvon). Standard reference material 
(GBW-07401) of soils was applied for quality as-
surance and control (QA/QC). The quality control 
performed included a daily analysis of standard 
and replicate analysis of samples and blanks. The 
satisfactory recoveries rate for Hg, As, Pb, Mo, and 
Be were 92.7–106.4%, 94.2–103.6%, 87.9–112.1%, 
85.6–104.2% and 89.5–107.4%, respectively.

Geostatistics. Geostatistics uses the technique 
of variogram to measure the spatial variability of 
the recognized variable and provides the input 
parameters for the spatial interpolation of kriging 

(Webster and Oliver 2001). Kriging has been widely 
used as an important interpolation method at dif-
ferent scales, especially in soil pollution (Chen et 
al. 2008). The semivariogram γ (h), measures the 
mean variability between two points x and x + h, 
as a function of their distance h, for data location 
at discrete sampling locations. The semivariogram 
is an autocorrelation statistic defined as follows 
(Isaaks and Srivastava 1989):

                      N(h)
g(h) =    1        Σ [Z(xi) – Z(xi + h)]2

          2N(h)   i=1

Where: Z (xi) is the value of the variable Z at point i, Z 
(xi + h) is the value of the variable Z at point i + h, and 
N(h) is the number of sample couples points separated by 
the lag distance h.

The experimental variogram measures the average
degree of dissimilarity between non-sampled values 
and nearby data value and thus can depict autocor-
relation at various distances. The variogram model
is chosen from a set of mathematical functions that 
describe spatial relationship and is usually fitted
by weighted least squares and range, nugget and 
sill are then used in the kriging procedure. In this 
study, to make distribution maps, several spatial 
interpolation techniques were evaluated for the best 
results, such as Kriging, Global/Local Polynomial 
Interpolation (G/LPI), Inverse Distance Weighting 
(IDW) and Radial Basis Functions (RBF). We used 
kriging (Ordinary kriging) as a spatial interpolation 
technique to make distribution maps because it is 
very flexible and allows users to investigate graphs
of spatial autocorrelation and allow prediction, pre-
diction standard error, and probability maps and 
at the same time minimize the error of predicted 
values. The statistics of the differences between the
measured and predicted values at sampled points is 
often used as an indicator of the performance of an 
inexact method (Burrough and McDonnell 1998).

For the evaluation of the degree simulation qual-
ity and the model-experiment comparison of differ-
ent model approaches, a cross validation indicators 
and additional model parameters can be used. 
In this paper for comparing these models, cross 
validation was used by statistical parameters of 
mean error (ME), root mean square error (RMSE), 
average standard error (ASE), mean standard er-
ror (MSE), and root mean squared standardized 
error (RMSSE) (Robinson and Metternicht 2006). 
ME is used to determine the degree of bias in the 
estimates, often referred to as the bias (Isaaks and 
Srivastava 1989) but it should be used cautiously 
as an indicator of accuracy because negative and 
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positive estimates counteract each other and re-
sultant ME tends to be lower than actual error 
(Nalder and Wein 1998). RMSE provides a measure 
of the error size, but it is sensitive to outliers as it 
places a lot of weight on large errors (Hernandez-
Stefanoni and Ponce-Hernandez 2006).

MSE suffers the same drawbacks as RMSE. Whereas
MAE is less sensitive to extreme values (Vicente-
Serrano et al. 2003) and indicates the extent to which 
the estimate can be in error (Nalder and Wein 1998). 
The difference between the known data and the
predicted data is calculated using mean error and 
it should be a value near zero. The RMSE quantifies
the error of the predicted surface. The variability of
the prediction is evaluated by comparing the ASE 
and RMSE. If the ASE is greater than the RMSE the 
variability of prediction is overestimated. Because 
the ME is a function of the scale of the data, the ME 
is standardized to the MSE by dividing the predic-
tion error by their prediction standard error. The
MSE should be a value near zero. In ordinary krig-
ing, the probability maps depend on the kriging 
standard errors. If ASE is close to the root-mean 
squared prediction error, assessment of variability 
in prediction error has been done correctly. If the 
average standard error is greater or less than root-
mean-squared prediction error, prediction has been 
made over and underestimating, respectively.

The disjunctive kriging technique is applied for as-
sessment of pollution risk to evaluate the probability 
that the true value of soil risk element at non-sampled 
points exceeds the specified thresholds. It provides
an estimate of the conditional probability that a 
random variable located at a point, or averaged over 
a block in two-dimensional space, exceeds certain 
thresholds. It is assumed that the concentration of 
a radionuclide is a realization of a random variable 
Z(x), where x denotes the spatial coordinates in two 
dimensions. If a threshold concentration zc is defined,
marking the limit of what is acceptable, then the scale 
is dissected into two classes, which are less than and 
more than zc.. The soil must belong to either class
at any place. The values 0 and 1, respectively, can
be assigned to two classes, thereby creating a new 
binary variable, or indicator, which is denoted by Q 
[Z(x) ≥ zc] (Lark and Ferguson 2004).

Multivariate statistics and data transforma-
tion. The test of normality of the data set was 
performed with the Kolmogorove-Smirnov (K-S) 
test, skewness and kurtosis parameter. It is nec-
essary to normalize the data transformation for 
environmental variables as they have a lognormal 
pattern (Krige 1960). The principal component 
analysis (PCA) was employed for identification of 

risk element sources. The PCA converts the vari-
ables under investigation into factors or principal 
components and correlation among the original 
variables can be minimized and measured ele-
ments into fewer groups. In addition, Varimax 
and Kaiser Normalization rotation was applied 
to maximize the variance of the factor loading 
across variances for each factor.

Multivariate statistical analyses and descriptive 
statistical parameters of the data were performed by 
SPSS (V.13) software packages (SPSS Inc., Chicago, 
USA) for Windows. Geostatistical analysis, semivar-
iogram model fitting and spatial distribution using
ordinary kriging were performed with GIS software 
ArcGIS V.9.2 (ESRI Co, Redlands, USA)

RESULTS AND DISCUSSION

Descriptive statistics and normality test. The 
basic descriptive statistics for raw data of risk 
elements is summarized in Table 1. Raw data sets 
show positive skewness except As. It is seem that 
the skewness and kurtosis for these risk elements 
are low and they had not passed the Kolmogorov-
Smirnov normality test (K-S p). Since further statis-
tics and geostatistics analysis needs data to follow 
a normal distribution, the significance levels of 
the Kolmogorov-Smirnov normality test (K-S p) 
for the row data are shown in Table1. The mean 
concentrations of Hg, Mo and Be in analyzed 
samples were higher than background level values, 
while the mean concentrations of As and Pb were 
lover than their background levels provided by 
the Ministry of Industries and Mines Geological 
Survey of Iran (Alavi Naeini et al. 2005). A large 
coefficient of variation (CV%) of Hg and Pb in 

Table 1. Summary statistics for heavy metals concentra-
tions (mg/kg) in top soil

As Hg Pb Mo Be
Mean 7.23 0.51 16.46  5.54 4.09
Minimum 0.55 0.02  1.53  1.26 0.78
Maximum 14.56 1.20 46.32 12.36 8.54
Std. Deviation 2.64 0.25  8.63  2.21 1.93
Skewness –0.06 0.34  0.91  0.49 0.08
Kurtosis –0.05 0.48  0.98 –0.16 –0.64
CV (%) 36.51 50.10 52.42 39.89 48.22
Background value 11.4 0.10 75.52  2.22 nd
Guide value  12 0.30   70 5 4

P < 0.05; CV – coefficient of variation
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soils, which reached 50.10 and 52.42, respectively, 
implied a great heterogeneity in soils and suggest 
that extrinsic factors such as human activities may 
be a primary source of these metals. High con-
centrations (i.e. above background levels) coupled 
with a high coefficient of variation suggest anthro-
pogenic inputs for metal elements (Manta et al. 
2002). However, some researchers (Facchinelli et 
al. 2001) suggest that wastewater is the main source 
of these elements in agricultural soils, especially 
in densely populated areas with an inefficient 
cleaning process. The lowest CV% of As, Mo and 
Be exhibit a weak variation, and their content was 
almost constant in local and their values may be 
probably caused by lithogenic process.

Multivariate analysis. In order to better describe 
the relationship among risk elements, principal 
component analysis was performed. The results 
of PCA for risk element concentration in soil are 
illustrated in Table 2. The rotation of the matrix 
contributes to clarify ambiguities in component 
matrix. Based on eigenvalue (eigenvalue > 1), two 
main PCs explained 54.23% of the total variance 
(Table 2). The first PC (PC1) explains 28.72% of 
total variance and consists of Pb, Mo and Be. The 
initial component matrix (PC1) indicates that Pb, 
Mo and Be are associated, displaying high value 
in the first component.

This may indicate that the contamination of Pb,
Mo and Be may originate from the same sources, 
such as the lithogenic process. The second PC (PC2)

explains 25.51% of the total variance and consists 
of As and Hg. These metals can be defined as an
anthropogenic component due to the presence of 
high levels in some soils. Relatively lower loading 
factors of these metals in the first component imply
that other sources, such as wastewater and industrial 
contamination, may control the concentrations of As  
and Hg. The high As and Hg levels may be related
to wastewater, vehicle and industrial fumes.

Geostatistical analysis. The experiment semi-
variogram depicts the variance of the sample values 
at various separation distances. The ratio of nug-
get to sill (nugget/sill) can be used to express the 
extent of spatial autocorrelations of environmental 
factors. If the ratio is low (< 25%), the variable 
has strong spatial autocorrelations at a regional 
scale. A high ratio of nugget effect (> 75%) plays 
an important role in spatial heterogeneity of soil 
properties .To some extent, the spatial variabil-
ity of risk elements may be affected by intrinsic 
factors (pedogenic factors such as soil parent 
material) and extrinsic factors (anthropogenic 
factors such as agricultural practices). In general, 
strong spatial dependence of soil properties can 
be affected by intrinsic factors and weak spatial 
dependence can be affected by extrinsic factors 
(Cambardella 1994). 

The ratio of nugget to sill of As and Hg was more
than 0.75 showing week spatial dependence due to 
the effects of extrinsic factors such as industrial
production, soil practice management and use of 

Table 2. Total variance explained and component matrixes for elements

Component

Total variance explain

initial eigenvalues extraction sums of squared loadings rotation sums of squared loadings

total variance 
(%)

cumulative 
(%) total variance 

(%)
cumulative 

(%) total variance 
(%)

cumulative 
(%)

1 1.44 28.75 28.75 1.44 28.75 28.75 1.44 28.72 28.72
2 1.27 25.48 54.23 1.27 25.48 54.23 1.28 25.51 54.23
3 0.83 16.60 70.83 – – – – – –
4 0.77 15.41 86.24 – – – – – –
5 0.69 13.76 100.00 – – – – – –

Element
Component matrix Rotate component matrix

PC1 PC2 PC1 PC2
Pb 0.644 0.450 0.685 0.385
Be 0.662 –0.263 0.633 –0.326
Mo 0.746 0.028 0.745 –0.045
As –0.168 0.700 –0.100 0.713
Hg –0.026 0.716 0.044 0.715

Extraction method: Principal Component analysis; Rotation method: Varimax with Kaiser Normalization
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wastewater. The ratio of Pb, Mo and Be was between
0.25 and 0.75; they have moderate spatial dependence, 
indicating that intrinsic and extrinsic factors such as 
industrial production, agricultural practice, parent 
material and topography changed their spatial cor-
relations. The attribute of the semivariogram model
and best-fit model parameters that are used as input

to kriging interpolation are summarized in Table 3. 
The results show that soil As, Hg, Pb, Mo and Be
were fitted with Circular, Stable, J-Bessel, Hole effect
and Tetra-spherical models, respectively.

Trend analysis was applied to diagnose aniso-
tropic parameters of risk elements and their char-
acteristic trends, which is helpful for removing a 

Table 3. Semivariograms models and parameters of heavy metals

Metal Semivariogram 
model Nugget (C0) Sill (C0 + C) C0/(C0 + C) Range RMSE Anisotropy 

 Angle
As Circular 7.447 8.406 0.886 19041 0.989  82.6
Hg Stable 0.041 0.052 0.796 18633 0.952 298.8
Pb J-Bessel 41.097 73.478 0.557  3541 0.952  23.7
Mo Hole Effcect 3.541 5.023 0.705  5347 0.999 296.2
Be Tetra spherical 1.393 4.349 0.679  4945 0.997   3.6

As Be

Hg Mo

Pb

Figure 2. The spatial variation patterns of risk elements. 
x-axes – east-west direction; y-axes – south north 
direction; z-axes – metal content
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trend from the dataset before using kriging. The 
results of trend analysis are illustrated if Figure 2. 
The elements of Hg and Mo demonstrate straight 
line pattern in both east-west and south-north 
directions. While As and Pb show an inverted 
U-shape curve in south-north direction and As, 
Pb, Mo and Be show second order pattern in east-
west direction.

Spatial distribution and risk assessment. The 
distribution maps of risk elements including As, 
Hg, Pb, Mo and Be concentrations are illustrated 
in Figure 3. They show that the spatial variation 
of risk element concentrations generate from their 
semivariograms.

The distribution of As and Hg had a clear boundary
in the west of the area. Their spatial distribution maps

Figure 3. Filled contour maps of soil As, Hg, Pb, Mo 
and Be in agricultural soils

Soil As (mg/kg)
Filled Contuors

Soil Hg (mg/kg)
Filled Contuors

Soil Mo (mg/kg)
Filled Contuors

Soil Pb (mg/kg)
Filled Contuors

Soil Be (mg/kg)
Filled Contuors
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show similar geographical trends; since there were 
around the Firuzabad River, the usage of wastewater 
from the river obviously affects the soil risk element
concentrations. In the distribution map of Be, it is 
a wide area from northeast to southeast. However, 
the arable lands were widely irrigated with urban 
and industrial wastewater, which had a large effect
on As, Hg and Pb soil concentration.

The estimate probability of exceeding the thresh-
old was kriged by disjunctive kriging (Figure 4). The 
results show that the As, Hg, Mo and Be exhibited 
the pollution risk. For soil Hg, the north-east to 
south-west of study area had high pollution risk, 
where the estimate probability (Ω [Hg ≥ 0.3mg/kg]) 
reached 0.82–1.00; the high probability of exceed-
ing threshold values of Hg in the north to south 
are highly correlated with vegetable area. For soil 
As, the map shows that the areas with high risk 
are mainly located in the north-west study area, 
where estimate probability (Ω [As ≥ 12mg/kg]) 
reached 0.12–0.21.

However, there were 85 and 27 samples in which 
Hg and As contents exceeded the guide values, 
respectively. They suggest the pollution fact of 
farmlands in southern Tehran; the application of 
pesticides and industrial and urban wastewater 
in this area might be important cases of the Hg 
and As pollution risk and the areas with estimate 
probability cannot be regarded as safe for veg-
etable growth.

The probability map of Mo and Be exhibits many 
hotspots. The highest risk areas (Ω [Mo ≥ 5 mg/kg]) 
and (Ω [Be ≥ 4 mg/kg]) are distributed in southern 
Tehran, due to the wastewater applications with 
high concentration of risk elements (Table 1) and 
agricultural practices.

The risk element concentrations in the topsoil of
south of Tehran agricultural lands had an increas-
ing trend due to wastewater irrigation and using of 
fertilizers and pesticides in the past decade. Based 
on multivariate statistical analysis and Geostatistical 
analysis, the concentrations of As and Hg were likely 

Figure 4. Estimated probability maps of As, Hg, Mo and Be

Ω (As > 12 mg/kg) Ω (Hg > 0.3 mg/kg)

Ω (Mo > 5 mg/kg) Ω (Be > 4 mg/kg)
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affected by anthropogenic factors and had high
risks for environmental pollution and human health. 
In fact, a point source of contamination for these 
risk elements was not perceived in the study area, 
while the concentration of Pb, Mo and Be were re-
lated to the pedogenic and anthropogenic factors 
(e.g. the discharge of wastewater). The study results
demonstrated that the spatial variability of five risk
elements in farmland was apparent in the southern 
Tehran. This result presented here could be used
for planning, risk assessment and decision-making 
in environmental management.
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