Hydrogen peroxide acts as a signal molecule in ${\rm CO}_2$ laser pretreatment-induced osmotic tolerance in wheat seedlings

Z.B. Qiu², Q. Li¹, Z.Z. Bi², M. Yue¹

¹College of Life Science, Northwest University, Xi'an, P.R. China ²College of Life Science, Henan Normal University, P.R. China

ABSTRACT

The objective of this study was to test whether hydrogen peroxide (H_2O_2) is involved in laser pretreatment-induced water tolerance in wheat seedlings due to its nature as a second messenger in stress responses. The results showed that 3 min laser pretreatment could enhance water tolerance in wheat seedlings by decreasing the concentration of malondialdehyde (MDA), the production rate of superoxide radical (O_2^-) , and increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and the concentration of glutathione (GSH), and having a positive physiological effect on the growth of osmotic stress seedlings. But the promotive effect of laser pretreatment-induced water tolerance in wheat seedling was effectively reversed by addition of 2 mmol AsA (ascorbic acid) or 5 μ mol DPI (diphenyle iodonium), but exogenous 100 U/mL CAT could not reversed laser pretreatment-induced protective effect on wheat seedlings under osmotic stress. The results suggest that H_2O_2 metabolism was involved as signal in the processes of laser-induced water acclimation and laser-induced protective effect was shown to be likely related to NADPH oxidase-dependent H_2O_2 production.

Keywords: laser; osmotic stress; lipid peroxidation; antioxidative system

The laser has been widely used in the field of biology with the development of laser technology. Laser was used widely as pre-sowing seed treatments to increase seed germination and seedling growth (Qi et al. 2002). Previous studies indicated that suitable doses of laser irradiation improved plant metabolism, enzymatic activities and the concentration of chlorophyll (Qiu et al. 2010). Qiu et al. (2008) had preliminarily proved that suitable laser pretreatment of embryos enhanced water tolerance of wheat seedlings by decreasing the concentration of malondialdehyde (MDA), the production rate of superoxide radical (O_2^-) and increasing the activities of ascorbate peroxidase (APX) and peroxidase (POD). The long-term physiological effect of CO2 laser treatment on UV-B or osmotic stress damaged plants was also observed (Qiu et al. 2002, 2008). However, the physiological mechanism of the effect of laser pretreatment on seed germination and seedling growth was unknown.

Drought is the biggest limiting factor for plant growth and crop production and recent global climate change made this situation more serious (Wang et al. 2003). One important consequence of abiotic stresses is an increase in the cellular levels of reactive oxygen species (ROS), which show toxicity to the metabolic functions after conversion to H_2O_2 (Sairam et al. 2004). There is compelling evidence about the biological activity of ROS with emphasis on the function of hydrogen peroxide (H₂O₂) as a signal molecule in plants (Hung et al. 2005). Chamnogpol et al. (1998) reported that H₂O₂ can act as an intermediate signal upstream of both ethylene and salicylic acid during plant stress responses, or can serve as a second messenger in signal transduction pathways, leading to stress acclimation. Available information suggest that H₂O₂ directly regulates the expression of numerous genes, some of which are involved in plant defense and antioxidants, cell rescue/defense proteins, and signaling proteins such as kinase,

Supported by the Opening Foundation of Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), and by the Ministry of Education and Project of the Youth Backbone Teacher of Henan Normal University.

phosphatase, and transcription factors (Hung et al. 2005). Hence, $\rm H_2O_2$ signaling is of potential significance to any program aimed at improving crop tolerance to environmental stresses.

Exogenous application of H₂O₂ increases chilling tolerance by enhancing the glutathione level of mung bean seedlings (Murphy et al. 2002). Azevedo Neto et al. (2005) reported that addition of H_2O_2 to the nutrient solution induces salt tolerance by enhanced activities of antioxidants and reduced peroxidation of membrane lipids in leaves and roots of maize as an acclimation response. In these studies, H₂O₂ can be viewed as a signal molecule in the regulation of plant growth and development, whereas suitable doses of laser irradiation also had a positive effect on plant growth. So we put forward a hypothesis that $\boldsymbol{H}_2\boldsymbol{O}_2$ metabolism was involved as signal in the processes of laser-induced water acclimation. The aim of this investigation was to examine the relationship of H_2O_2 and laser pretreatment in water tolerance, in order to better understand the physiological and biochemical mechanism of laser-induced water acclimation.

MATERIAL AND METHODS

Plant materials. The uniform seeds of wheat (*Triticum aestivum* L. cv. Mianyang 26, obtained from Yangling Breeding Center of National Wheat Engineering Research Center of China) were randomly divided into two groups: (1) without any treatment; (2) seeds exposed to CO_2 laser irradiation.

Laser treatment: seeds were sterilized for 3 min by 0.01% ${\rm HgCl}_2$ and were washed for 30 min by flowing water. A ${\rm CO}_2$ laser (Wavelength 10 600 nm,

power density 20.1 mW/mm², beam diameter 5 mm) directly irradiated the embryo of wheat seed for 3 min. Three minute laser pre-treatment was chosen according to our previous work (Qiu et al. 2008). Ten replications of 40 pure seeds were used. One seed was pretreated only once by laser irradiation. The seeds were exposed to laser one by one. No laser irradiation and no osmotic stress were regarded as the control (CK). The CO₂ laser (Model No. MSHCO2-A-C800MM) was made in the Northwest University (Xi´an, China).

Untreated seeds and CO₂ laser-pretreated seeds were grown in Petri dish (diameter 18 cm), flushed daily with Hoagland solution, in a growth chamber under a 12 h photoperiod at 250 µmol/m²/s provided by fluorescent lamps, 70% relative humidity and 25°C/18°C (day/night). When the seedlings were 12 days old (with two fully expanded leaves), they were treated with 10% (w/v) polyethylene glycol (PEG 6000) solution for 3 days. 10% (w/v) PEG6000 treatment was chosen according to our previous work (data not shown). On 3 days of osmotic stress, leaves and roots were sampled for various analyses. See Table 1 for details about experimental design.

Diphenylene iodonium (DPI) (NADPH oxidase inhibitor) was purchased from Sigma (USA). All above chemicals were added to Hoagland solution with or without PEG6000. All of the solutions were regenerated once a day.

Lipid peroxidation and production rate of O_2^- . MDA concentration was measured according to Qiu et al. (2008). The production rate of O_2^- was determined using the method of Elstner and Heupel (1976).

Antioxidant enzymes activities and antioxidant compounds concentration. Activity of superoxide

Table 1. The methods of CO_2 laser pretreatment, $\mathrm{H}_2\mathrm{O}_2$ treatment and osmotic stress

Group/treatment	CO ₂ laser treatment (min)	Osmotic stress % (w/v)	CAT (U/mL)	AsA (mmol)	DPI (µmol)
Hoagland (the control, CK)	0	0	0	0	0
PEG 6000 (P)	0	10	0	0	0
Laser treatment + PEG 6000 (L + P)	3	10	0	0	0
Laser treatment + PEG 6000 + 100 U CAT (L + P + C)	3	10	100	0	0
Laser treatment + PEG $6000 + 2 \text{ mmol AsA}$ $(L + P + A)$	3	10	0	2	0
Laser treatment + PEG 6000 + 5 μ mol DPI (L + P + D)	3	10	0	0	5
Hoagland + 100 U CAT (CK + CAT)	0	0	100	0	0
Hoagland + 2 mmol AsA (CK + AsA)	0	0	0	2	0
Hoagland + 5 μmol DPI (CK + DPI)	0	0	0	0	5

dismutase (SOD) (EC1.15.1.1) was assayed according to Giannopolitis and Ries (1977). Catalase (CAT) activity (EC1.11.1.6) was determined using the method of Cakmak and Marschner (1992). Peroxidase (POD, EC 1.11.1.7) activity was determined as described by Zhang and Kirham (1994). The activity of APX (EC 1.11.1.1) was assayed according to Nakano and Asada (1981). GR activity was determined as described by Foyer and Halliwell (1976). Glutathione content was determined according to Ellman (1959). Ascorbic acid (AsA) concentration was determined using the method of Tonamura (1978).

Growth parameter. Green parts in the plant and root were oven dried at 80°C until constant weight and weighed using electronic scale as dry weight (g). Plant height and root length were also measured.

Statistics. All of the data were subjected to ANOVA and are presented here as the mean \pm SE of at least three independent experiments.

RESULTS AND DISCUSSION

Osmotic stress induces the accumulation of ROS and causes oxidative damage to the plant (Anjum et al. 2011). We demonstrate that the lesser effects of 10% (w/v) PEG6000 on lipid peroxidation in

laser-pretreated wheat seedlings. As showed in Figure 1, osmotic stress (P) induced toxic effects on plant growth and development. However, laserpretreated wheat seedlings under osmotic stress (L + P) can counteract oxidative damage and have protective effect against stressful conditions. It was assumed that plant undergo significant morphological and metabolic changes in response to drought. Plant height, root length, dry weight and root dry weight increased significantly by the interaction (Figure 1), which was concomitant with decreased production rate of O2 and the concentration of MDA (Figure 2). The same phenomena was found in the laser-pretreated wheat seedlings exposed to UV-B radiation or drought stress, which also has reverse detrimental effects (Qi et al. 2002). To determine whether H_2O_2 is involved in MDA concentration and the production rate of O₂ decreasing in wheat seedlings induced by laser pretreatment, 12-day-old seedlings pretreated with 3 min laser radiation under osmotic stress were treated with 100 U/mL CAT, 2 mmol AsA or 5 µmol DPI.

Here, exogenous CAT was used to determine the effect of laser pretreatment on wheat seedlings under osmotic stress. CAT, a membrane impermeable scavenger of $\rm H_2O_2$, can degrade extracellular $\rm H_2O_2$ to molecular oxygen and water (Hideo et al. 2003).

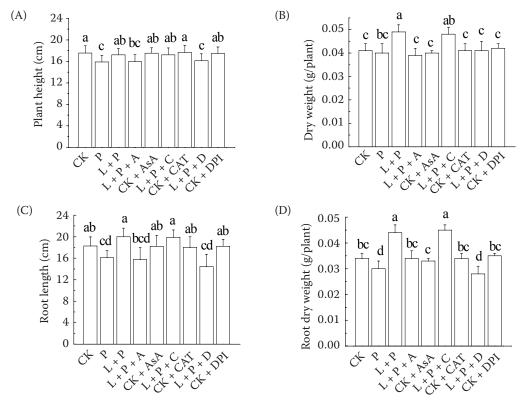


Figure 1. Effect of CO_2 laser treatment on growth and development in wheat seedlings under osmotic stress for 3 days. Bars are means \pm standard error of 18 determinations. Means with different letters above bars were significantly different at 0.05 level according to the Duncan's multiple range test

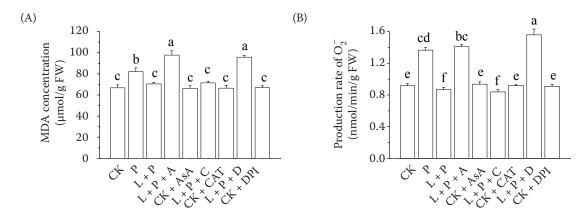


Figure 2. Effect of CO₂ laser treatment on MDA concentration (A) and the production rate of O₂ (B) in wheat seedlings under osmotic stress for 3 days. See notes to Figure 1. Bars are means ± standard error of 6 determinations

Exogenous application of H_2O_2 was able to induce salt tolerance by enhanced activities of antioxidants and reduced peroxidation of membrane lipids in leaves and roots of maize and this effect could be eliminated by exogenous CAT (Azevedo Neto et al. 2005). In the experiment, exogenous 100 U/mL CAT could not reverse laser pretreatment-induced MDA concentration and the production rate of O₂ decreasing in wheat seedlings under osmotic stress (Figure 2). As CAT is not a cell-permeable

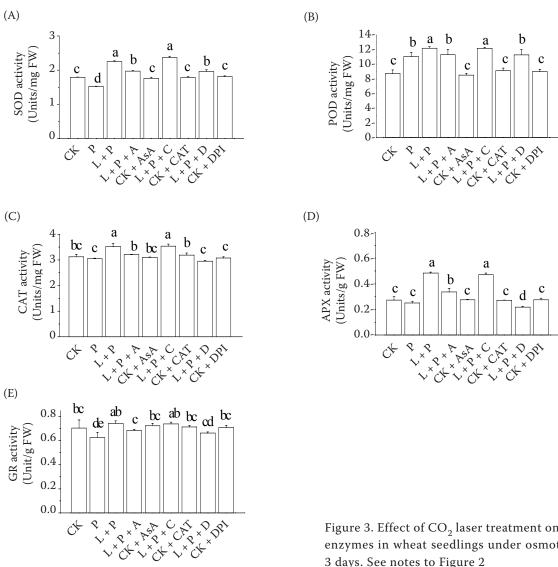


Figure 3. Effect of CO₂ laser treatment on antioxidant enzymes in wheat seedlings under osmotic stress for 3 days. See notes to Figure 2

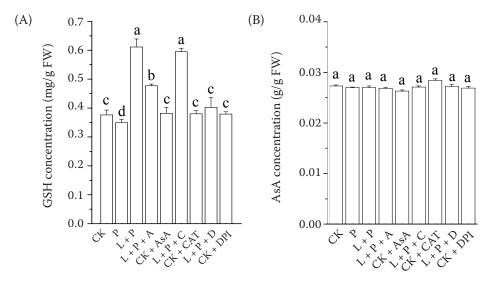


Figure 4. Effect of CO_2 laser treatment on GSH (A) and AsA (B) concentration of wheat seedlings under osmotic stress for 3 days. See notes to Figure 2

molecule, the exogenous CAT was not able to remove the endogenous $\rm H_2O_2$ in laser pretreated seedlings, it could not eliminate the effect of laser pretreatment and no effect of laser pretreatment-induced water tolerance was observed. This result was similar to Li et al. (2009).

Also AsA is an $\rm H_2O_2$ scavenger and one of the most important reducing substrates for $\rm H_2O_2$ removal in cells (Noctor and Foyer 1998). Our experiments showed that 2 mmol AsA could effectively reversed laser pretreatment-induced MDA concentration and the production rate of $\rm O_2^-$ decreasing in wheat seedlings (Figure 2). The results suggest that laser pretreatment-induced protective effect on lipid peroxidation under osmotic stress was related to a pathway involving $\rm H_2O_2$.

In plant cells, H₂O₂ can be generated by specific enzymes such as plasma membrane-localized NADPH oxidases. NADPH oxidases are the main enzymes that produce H₂O₂ in cells (Foreman et al. 2003). DPI is a specific inhibitor of NADPH oxidases and strongly inhibits the NADPH oxidases production of H₂O₂ in plant cells (Desikan et al. 1998). Li et al. (2009) detected that 10 µmol DPI treatment for 24 h markedly inhibited adventitious root formation of mung bean seedlings. Our experiments showed that 5 µmol DPI could effectively reverse laser pretreatment-induced MDA concentration and the production rate of O_2^- decreasing in wheat seedlings (Figure 2). The results imply that the inhibitory effect of DPI on laser pretreatment-induced MDA concentration and the production rate of O₂ decreasing in wheat seedlings were due to the DPI inhibition of NADPH oxidase production of H2O2. The endogenous H₂O₂ in cells may be a signal molecule in laser pretreatment-induced MDA concentration and the production rate of O_2^- decreasing in wheat seedlings.

Several studies have produced evidence for a signaling role for H₂O₂ (Hung et al. 2005). The addition of H2O2 to plant tissues or its experimental generation was demonstrated to act as a signal in the induction of gene expression of the enzymes CAT, APX, POD, and GR (Van et al. 2001). Our results indicated clearly that prior CO₂ laser irradiation of embryos of plants could raise SOD, POD, CAT, APX, and GR activities and increase the concentration of GSH (Figures 3 and 4), which negatively correlated with decreasing production rate of O₂ and the concentration of MDA (Figure 2). Because of higher activity of SOD, POD, CAT, APX, and GR and higher concentrations of GSH in laser-pretreated seedlings, free radical production would be eliminated quickly. As a result, they prevented lipid peroxidation and MDA production, and thus the plant cells were protected from osmotic stress damage. It is unknown, however, whether H₂O₂ is involved in laser-induced antioxidant enzymes and antioxidant compounds in wheat seedlings under osmotic stress. Therefore, the effect of H₂O₂ on SOD, POD, CAT, APX, and GR activities and concentrations of AsA and GSH in wheat seedling under osmotic stress were determined, although convincing data were obtained by the H₂O₂-induced increase in plant tolerance or resistance against salt or osmotic stress (Azevedo Neto et al. 2005). As shown in Figures 3 and 4, the promotive effect of the laser pretreatment was suppressed in the presence of the H₂O₂ scavenger (AsA) or NADPH oxidase inhibitor (DPI) indicating that laser pretreatmentinduced protective effect might be partly due to the intracellular production of H_2O_2 .

REFERENCES

- Anjum S.A., Farooq M., Wang L.C., Xue L.L., Wang S.G., Wang L., Zhang S., Chen M. (2011): Gas exchange and chlorophyll synthesis of maize cultivars are enhanced by exogenously-applied glycinebetaine under drought conditions. Plant, Soil and Environment, 57: 326–331.
- Azevedo Neto A.D., Prisco J.T., Eneas-Filho J. (2005): Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. Journal of Plant Physiology, *162*: 1114–1122.
- Cakmak I., Marschner H. (1992): Magnesium deficiency and high light intensity on enhance activities of superoxide dismutase, peroxidase and glatation reductase in bean leaves. Plant Physiology, 98: 1222–1227.
- Chamnogpol S., Willeekens H., Moeder W. (1998): Defense activation and enhanced pathogen tolerance induced by ${\rm H_2O_2}$ in transgenic tobacco. Plant Biology, 95: 818–823.
- Desikan R., Reyholds A., Hancock J.J., Neill S.J. (1998): Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defense gene expression in *Arabidopsis* suspension cultures. Biochemical Journal, 330: 115–120.
- Ellman G.L. (1959): Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82: 70–77.
- Elstner E.F., Heupel A. (1976): Inhibition of nitrite formation from hydro-xylammonium-chloride: a simple assay for superoxide dismutase. Analytical Biochemistry, 70: 616–620.
- Foreman J., Demidchik V., Bothwell J.H., Mylona P., Jones J.D. (2003): Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422: 442–446.
- Foyer C.H., Halliwell B. (1976): The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, *133*: 21–25.
- Giannopolitis C.N., Ries S.K. (1977): Superoxide dismutase: occurrence in higher plants. Plant Physiology, *59*: 309–314.
- Hideo I., Kaushik P., Sadiqa Q. (2003): Mechano-oxidative coupling by mitochondria induces proinflammatory responses in lung venular capillaries. The Journal of Clinical Investigation, 111: 691–699.

- Hung S.H., Yu C.W., Lin C.H. (2005): Hydrogen peroxide functions as a stress signal in plants. Botanical Bulletin of Academia Sinica, *46*: 1–10.
- Li S.W., Xue L.G., Xu S.J., An L.Z. (2009): Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environmental and Experimental Botany, 65: 63–71.
- Murphy T.M., Sung W.W., Lin C.H. (2002): $\rm H_2O_2$ treatment induces glutathione accumulation and chilling tolerance in mung bean. Function Plant Biology, 29: 1081–1087.
- Nakano Y., Asada K. (1981): Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22: 867–880.
- Noctor G., Foyer C.H. (1998): Ascorbate and glulathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49: 249–279.
- Qi Z., Yue M., Han R. (2002): The damage repair role of He-Ne laser on plants exposed to different intensities of UV-B irradiation. Photochemistry and Photobiology, 75: 680–686.
- Qiu Z.B., Li J.T., Yue M. (2010): The damage repair role of He-Ne laser on wheat exposed to osmotic stress. Canadian Journal of Plant Science, *90*: 691–698.
- Qiu Z.B., Liu X., Tian X.J., Yue M. (2008): Effects of ${\rm CO}_2$ laser pretreatment on drought stress resistance in wheat. Journal of Photochemistry and Photobiology B: Biology, 90: 17–25.
- Sairam P.K., Rao K.V., Srivastava G.C. (2004): Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, *163*: 1037–1046.
- Tonamura B. (1978): Test reactions for a stopped flow apparatus regulation of 2, 6-D and potassium ferricynide by L-ascorbic acid. Analytical Biochemistry, 84: 370–383.
- Van Breusegem F., Vranova E., Dat J.F. (2001): The role of active oxygen species in plant signal transduction. Plant Science, *161*: 405–414.
- Wang W.X., Vinocur B., Altman A. (2003): Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218: 1–14.
- Zhang J.X., Kirham M.B. (1994): Osmotic stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiology, *35*: 785–791.

Received on September 12, 2010

Corresponding author:

Dr. Ming Yue, Northwest University, College of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Xi'an, P.R. China e-mail: yueming@nwu.edu.cn