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NERICA (New Rice for Africa) is new rice, de-
veloped at the West Africa Rice Development 
Association (WARDA) in the 1990s, and is a cross 
of Oryza sativa L., a high-yield rice, and Oryza gla-
berrima Steud., a west African rice variety with 
drought, disease and insect tolerance (Jones et al. 
1997a). NERICA rice has the property of a short 
growth period, drought tolerance, disease and insect 
tolerance, high competitiveness with weeds and 
resultant decrease of weeding, and high protein 
contents (Jones et al. 1997b, Dingkuhn et al. 1998, 
1999). These properties are very interesting from 
the viewpoint of plant stress research. Salt stress 
generally causes osmotic stress, similar to drought 
stress, and inhibition of plant growth. NERICA 
rice, which is supposed to be drought resistant, is 
hypothesized to also have salt tolerance, because of 
the common mechanism of drought and salt stress. 
Recently, Awala et al. (2010) reported that WAB56-
104 (Oryza glaberrima Steud.), one of the parents of 
NERICA 4, was sensitive to salt stress, while CG14 
(Oryza sativa L.), the other parents, was tolerant of 
salt stress, and it was shown clearly that NERICA 4 
has a character midway between the two. However, 

physiological and biochemical research of NERICA 
rice under salt-stress condition is relatively lacking.

In this study, we investigated the physiological 
responses to salt stress of NERICA rice seedlings 
in contrast to those of japonica Nipponbare (Oryza 
sativa L.) seedlings. Specifically, we compared the 
contents of Na, free amino acids and polyamines 
with an examination of responses to salt stress in 
NERICA rice seedlings.

MATERIAL AND METHODS

Plant materials and NaCl treatment. We used 
seeds of NERICA 1–7 provided by Dr. Hiroshi 
Tsunematsu (JIRCAS, Japan). Seeds of NERICA 
rice and japonica Nipponbare (Oryza sativa L. cv. 
Nipponbare) were germinated at 30°C in an incuba-
tor for 48 h after disinfection and transferred to a 
growth chamber (25/20°C; day/night, light intensity 
270 µmol/m2/s, 14-h photoperiod, 60% relative hu-
midity). These seedlings were grown in modified 
Kasugai’s nutrient solution (Kasugai 1939). After 
the appearance of the 2nd leaf, these seedlings (about 
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2-week-old plants) were further treated with diluted 
(1/2-strength) Kasugai’s nutrient solution contain-
ing 100 mmol/L NaCl for 3 days. Seedlings without 
NaCl treatment were used as control plants. The 
plants were harvested and weighed at the onset 
(0 day) and 3 days after NaCl treatment. The second 
leaf blades of intact seedlings were immediately used 
for the measurement of chlorophyll fluorescence. 
Other seedlings were frozen in liquid nitrogen and 
lyophilized with a freeze dryer (FD-550R, Tokyo 
Rikakikai Co, Ltd, Tokyo, Japan). Freeze-dried tis-
sue was used for the extraction and determination 
of Na, amino acid and polyamine contents.

Analysis of each parameters. The effective 
quantum yield of photosynthetic energy conver-
sion (ΦII = ΔF/Fm’) was monitored by a chloro-
phyll fluorometer (MINI-PAM, WALZ, Effeltrich, 
Bayern, Germany). Na content was determined 
according to Kim et al. (1999). Analysis of free 
amino acids and proline was carried out according 
to Desmaison et al. (1984). Polyamines were ana-
lyzed by high performance liquid chromatography 
(HPLC) according to Flores and Galston (1982). 
More details of analytic methods were given in a 
previous report (Yamamoto et al. 2004).

All the data were based on two independent ex-
periments with three replications. The difference 
in each value between treatments was analyzed 
by the Tukey’s HSD test (P < 0.05).

RESULTS

Effect of salt stress on plant growth and chlo-
rophyll fluorescence. Primary growth of NERICA 

rice, especially NERICA 1 and NERICA 7, was 
greater than that of japonica Nipponbare (data not 
shown). NERICA 6 was inferior to other NERICA 
rice varieties in primary and final growth (Figure 1a). 
Growth of all rice seedlings was inhibited by 
15–25% under 100 mmol/L NaCl treatment 
(Figure 1a).

Figure 1b shows chlorophyll fluorescence (ΦII) in 
the 2nd leaf blades under the salt-stress condition. 
The ΦII value of all varieties were the same under 
the non-stress condition, but decreased variably 
under the salt-stress condition. The decrement 
rates of ΦII of NERICA 2 and Nipponbare, 40% 
and 46%, respectively, were larger than those of 
other varieties. The ΦII value of NERICA 6 was 
inhibited only by 10% by salt stress, whereas its 
growth was significant inhibition by salt stress. 
Thus plant growth and ΦII levels show different 
responses to salt stress.

Effect of salt stress on Na content. Figure 2 
shows the Na content in the leaf blades and roots 
of NERICA rice varieties and Nipponbare under 
the salt-stress condition. Leaf-blade Na accumula-
tions in rice seedlings differed between varieties. 
In NERICA 2 and NERICA 6, leaf Na accumulation 
was higher, as in japonica Nipponbare, reflecting 
the growth and ΦII reduction under the salt-stress 
condition. Other NERICA rice varieties accumulated 
Na in leaf blades at rates of 44–63% of Nipponbare. 
Root Na accumulation was lower than that in leaf 
blades, and no clear differences were observed.

Effect of salt stress on amino acids. Proline 
contents, known to be compatible solutes (Yancey 
et al. 1982, Rajendrakumar et al. 1997, Magdy 
and Mansour 1998), increased in leaf blades of 
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Figure 1. Effect of NaCl treatment on plant growth (a) and ΦII value (b) of rice varieties. Symbols indicate 
control plants (□) and salt-stressed plants (■). 1–7 – NERICA 1–7; N – Nipponbare. Vertical bars represent 
± standard error (n = 3). Asterisks indicate a significant difference between control and salt stress (*P < 0.05; 
**P < 0.01; ***P < 0.001). Bars labeled with the same lowercase letters on open square bars or uppercase letters 
on closed square bars are not significantly different (P = 0.05)
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salt sensitive cultivar NERICA 2 by the salt stress 
(Table 1). Meanwhile, proline accumulation of 
the salt-tolerant cultivar NERICA 1 was 35% of 

NERICA 2. As for the other varieties, NERICA 3, 
NERICA 4, NERICA 6 and Nipponbare accu-
mulated 50% of the amino acids accumulated in 
NERICA 2 after the salt-stress treatment. Total 
amino acids increased 1.5–2.8 times with the salt 
stress.

Effect of salt stress on polyamines. Contents 
of three polyamines, putrescine, spermidine and 
spermine, in the 2nd leaf blades were more than 
twice higher in NERICA rice varieties than in 
Nipponbare (Figure 3a). Especially, spermidine 
content was 2.4–3.6 times higher in NERICA rice 
varieties.

Changes of the polyamines under salt stress 
differed among varieties, though the pattern of 
decreases in putrescine and spermidine and an 
increase in spermine was most common (Figure 3b). 
However, the decrements of putrescine and sper-
midine were more severe in salt-sensitive cultivar 
NERICA 2 than in salt-tolerant cultivar NERICA 1. 
NERICA 6, which did not show a decrease of ΦII 
despite having the same Na accumulation in the 
leaf blades as NERICA 2, showed a high concentra-
tion of polyamines after NaCl treatment together 
with salt-tolerant NERICA 1.

DISCUSSION

NERICA 1 was the most salt-tolerant among the 
NERICA rice varieties, based on growth inhibition 
and decrease of ΦII value in the 2nd leaf blades; 
by contrast, NERICA 2 was the most salt sensi-
tive (Figure 1). The trend in growth inhibition 
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Table 1. Effects of salt stress on the content of proline and total amino acids in the 2nd leaf blade of NERICA 
rice seedlings

Varieties
Proline (µmol/g DW) Total amino acids (µmol/g DW) 

control salt stressed control salt stressed

NERICA 1 0.42 ± 0.01b 3.29 ± 0.08CD,*** 52.67 ± 3.15a 80.94 ± 5.91B,*

NERICA 2 0.51 ± 0.01ab 11.47 ± 0.71A,** 58.72 ± 7.19a 163.20 ± 8.47A,***

NERICA 3 0.43 ± 0.00b 5.73 ± 0.44BC,** 43.49 ± 4.78a 110.46 ± 4.52B,***

NERICA 4 0.43 ± 0.01b 5.68 ± 0.88BC,* 55.01 ± 6.74a 97.14 ± 2.53B,**

NERICA 5 0.45 ± 0.00b 3.75 ± 0.51BCD,* 58.40 ± 8.24a 121.73 ± 6.88AB,**

NERICA 6 0.46 ± 0.01b 6.30 ± 1.05BC,* 52.38 ± 2.80a 109.81 ± 17.36B,*

NERICA 7 0.44 ± 0.03b 2.45 ± 0.25D,* 49.04 ± 0.12a 97.64 ± 7.40B,*

Nipponbare 0.59 ± 0.04a 6.40 ± 0.36B,** 57.96 ± 3.92a 164.38 ± 8.54A,***

Data are means ± SE (n = 3). Asterisks indicate a significant difference between control and salt-stressed plants 
(*P < 0.05; **P < 0.01; ***P < 0.001). Values labeled with same lowercase letters on control columns or uppercase 
letters on salt-stressed columns are not significantly different (P = 0.05)

Figure 2. Effect of NaCl treatment on the contents of Na 
in the 2nd leaf blades and roots of rice varieties. Details 
of symbols, variety numbers and statistical indicators 
are the same as for Figure 1
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of NERICA 2 at 3 days after NaCl treatment was 
higher than that of Nipponbare (Figure 1a). Salt 
tolerance indicated by maintenance of ΦII was 
markedly larger among these varieties; no decrease 
of ΦII was observed in NERICA 1 whereas in 
NERICA 2 and Nipponbare, ΦII decreased by 40% 
and 46% respectively under the salt-stress condition 
(Figure 1b). Furthermore, marked reduction was 
shown in Nipponbare under the 1.6-times light-
intensity condition (data not shown). These results 
suggest that NERICA rice is not only drought-
tolerant but also salt-tolerant, and certainly more 
salt-tolerant than japonica Nipponbare. This is in 
agreement also with previous report that NERICA 
1 is more tolerant to salt stress than NERICA 2 
(Awala et al. 2010). Additionally, NERICA 1 and 
NERICA 7 showed superior growth at the 2nd leaf 

stage (Figure 1a). It seems that a short growing 
period and early initial growth of NERICA rice 
were brought on by these varieties’ high potential 
of polyamine biosynthesis, because spermidine is 
known to be an essential component of growth and 
development in polyamines (Feirer et al. 1985).

It is clear that the difference in salt tolerance 
between Nipponbare and NERICA rice is related 
to accumulation of Na in the leaf blade (Figure 2). 
The relation of salt tolerance to absorbed Na was 
reported by many previous researchers (Yeo and 
Flowers 1986, Lin et al. 2002, Hoai et al. 2003); the 
present study supports their results. Salt tolerance 
of Leguminosae Lotus species was correlated with 
not only high responses of antioxidant system but 
also low Na absorption and accumulation in leaves 
(Melchiorre et al. 2009). Moreover, it was suggested 
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that the difference of Na content in the leaf blade 
of NERICA rice varieties and Nipponbare were 
caused by Na absorption and translocation from 
the roots to leaf blades. Total amino acid content 
in leaf blades under NaCl treatment was high in 
NERICA 2 and low in NERICA 1 (Table 1), which 
might be caused by proteolysis, a great accumu-
lation of protein amino acids, and disturbance of 
nitrogen metabolisms, and accumulation of non-
protein amino acids or ammonia (data not shown). 
A previous study reported a positive accumulation 
of amino acids by proteolysis for osmoregulation 
related to salt tolerance of rice growing under dif-
ferent nitrogen media (Yamamoto et al. 2004). A 
close correlation between salt tolerance and amino 
acid accumulation was not considered for NERICA 
rice at this stage. Krishnamurthy and Bhagwat 
(1989) and many researchers reported changes 
in the polyamine content in rice under salt stress 
conditions. Lin and Kao (1995) observed a decrease 
in putrescine in shoots and roots of rice under salt 
stress, and an increase in polyamines and recovery 
of growth achieved by exogenous treatment of 
the putrescine substrates, arginine and ornithine. 
Exogenous putrescine was shown to inhibit Na 
absorption and decrease in rice yields (Prakash and 
Prathapasenan 1988). We also reported that the 
metabolism of polyamines was correlated with the 
salt-stress response in rice seedlings (Yamamoto 
et al. 2004). It was reported that the salt, drought 
and freezing tolerance changed by control of poly-
amine metabolic pathway in Arabidopsis thaliana 
(Urano et al. 2004, Yamaguchi et al. 2006, Cuevas 
et al. 2008, Alcázar et al. 2010). Our present results 
suggest that the difference in salt tolerance between 
NERICA rice and japonica Nipponbare not only 
involves translocation and accumulation of Na in 
shoots, absorbed from roots, but a difference in the 
biosynthesis and metabolic activity of polyamines 
in the leaf blades (Figure 3). In the future, it will 
be necessary to perform a more detailed analysis 
of polyamine metabolism and gene expression in 
NERICA rice seedlings, and the responses and 
yield under salt stress conditions introduced at a 
later growth stage.
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