Road salts effects on soil chemical and microbial properties at grassland and forest site in protected natural areas

J. Hofman¹, E. Trávníčková¹, P. Anděl²

¹Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic ²Evernia, Ltd., Liberec, Czech Republic

ABSTRACT

Road salting is used as a dominant way to keep road safety in winter, even in the protected natural areas. In our study, possible effects of winter road salting on soil microorganisms in close road vicinity were investigated. Soil chemical and microbial properties were monitored at a forest site in the Krkonoše Mountains national park and at a grassland site in the Kokořínsko protected landscape area (both located in the Czech Republic) in two sampling campaigns (autumn and spring). Effects of road salting on soil chemical properties (Na⁺ and Cl⁻ levels, pH, base saturation etc.) were clearly apparent at both sites. The most affected plots were 1 and 5 m from the road (increased pH, base saturation, and Na⁺ accumulation). At these plots, changes of microbial parameters were observed in both autumn and spring sampling, which suggested influence of salts. Increased value of metabolic quotient (qCO₂) indicated stress and potential ammonification was inhibited even 5 m from the road at the forest site. Hence, possible influence on soil biological quality should be considered when assessing the ecological risks of this kind of road treatment, especially in natural protected areas.

Keywords: soil microbial biomass; soil respiration; ammonification; road salting; soil chemistry

Snow and ice removal from roads is definitely necessary to improve safety of traffic in winter periods. Sodium chloride (NaCl) is the most common deicing agent due to low price, easy availability, storage and handling. Despite all benefits for traffic safety, there are also many adverse effects, especially related to increased levels of chloride and sodium ions in the surrounding environment. NaCl from road runoff is responsible for increased salinity or osmolality of surface and ground waters (Thunqvist 2004) and negative effects on freshwater organisms are frequently reported (Benbow and Merrit 2004, Environment Canada 2004, Ramakrishna and Viraraghavatan 2005).

In soil environment, salt transport and effects depend on a variety of factors and local conditions, such as roadside slope, soil type and texture, and vegetation cover (Ramakrishna and Viraraghavatan 2005). Generally, the most affected area is up to 5–10 m from the roadside (Lundmark and Olofsson 2007, Zehetner et al. 2009). Effects of NaCl ad-

ditions on soil chemistry are serious: increasing amounts of Na⁺ and Cl⁻ affect soil pH, soil structure, permeability, hydraulic conductivity, air conditions, and osmotic potential. This leads to a loss of soil stability, fertility and to osmotic stress for vegetation and soil macro- and microorganisms. Several studies reported negative effects of road salts on vegetation (Butler and Addison 2000, Czerniawska-Kusza et al. 2004).

Only few studies have dealt with the impact of deicing salts on intrinsic soil microorganisms although they are crucial in the maintenance of quality and fertility of soils. Therefore, the aim of our study was to investigate effects of road salting on soil microorganisms at two sites with different vegetation cover and to relate the microbial biomass changes to the soil chemistry conditions. Two sampling campaigns (spring and autumn) can help to decide if the effects are only temporary (spring sampling after snowmelt) or persistent (autumn sampling after the most salt is washed out).

 $Supported \ by \ the \ project \ CETOCOEN-CZ. 1.05/2. 1.00/01.0001) \ and \ by \ the \ Ministry \ of \ Transport \ of \ the \ Czech \ Republic.$

MATERIAL AND METHODS

The sampling sites were situated in the Czech Republic, in the Kokořínsko protected landscape area (KOK site) and in the Krkonoše Mountains national park (KRK site), nearby the roads with very intensive traffic. Both roads are intensively treated by salting during winters (about 6.6 and 13 t/km each winter at the KOK site and KRK site, respectively). Sampling plots were placed at the transect lines perpendicular to the roads. At both sites, sampling plots closest to the road (1 m) were at the roadside slope. They were typical Anthrosols, covered by grass and they were sampled from 0-15 cm depth. At the KOK site, soils (Glevic Fluvisol) were sampled at distances of 5, 10, and 15 m from horizontal meadow (mowed reed) below the road. Soil was sampled from two layers: 0-5 cm and 5-15 cm. At the KRK site, soils (Haplic Cambisol) were sampled at distances 5 and 20 m at the slope below the road and also 20 m at the slope above the road (as control). All plots at the KRK site were covered by spruce-beech forest and soil was sampled from fermentation organic top horizons (Of; 1-5 cm thick) and from humic organic top horizons (Oh; 2-7 cm thick). Sampling was performed in autumn 2009 and spring 2010. Soils were sampled as 3-5 sub-samples at each plot which were then mixed. Soil samples were manipulated and stored in accordance with the ISO 10381-6. For the microbiological analyses, fresh soils were sieved (2 mm) and stored at 4°C in darkness with air exchange. For chemical analyses, soils were airdried at laboratory temperature and sieved (2 mm).

Several chemical properties of soil samples were measured in accredited commercial laboratory: organic carbon content – $C_{\rm org}$ (ISO 14235), total nitrogen – $N_{\rm tot}$ (ISO 11261), soil pH active – pH(H $_2$ O) and exchangeable – pH $_{\rm KCl}$ (ISO 10390), concentrations of chlorides (Cl $^-$) in soil water extract 1:5 (ISO 9297), concentration of cations Ca^{2+} , K^+ , Mg^{2+} , Na^+ , cation exchange capacity, and base saturation – BS in three types of soil extracts: water 1:5 (active concentration), in Mehlich III extracts (potential concentration), and 0.1 mol/L $BaCl_2$ extracts according to Gillman (exchangeable concentration) (ISO 13536, Zbíral et al. 2004).

Three basic microbial parameters of soils were measured: microbial biomass content ($C_{\rm bio}$) by the chloroform fumigation extraction method according to the ISO 14240-2, basal (BR) and substrate-induced (SIR) respiration by gas chromatography according to the ISO 16072 and ISO 14240-1. In spring 2010 also potential ammoni-

fication (PAMO) was measured according to Alef and Kleiner (1987). All microbial measurements were carried out in triplicates. From the measured parameters, eco-physiological coefficients were calculated – microbial coefficient $C_{\rm bio}/C_{\rm org}$ and metabolic quotient qCO $_2$ – as BR/C $_{\rm bio}$ (Anderson and Domsch 1989, 1993) and also qCO $_2$ -SIR as SIR/C $_{\rm bio}$ (Dilly 2006).

For each layer, statistical analyses (Statistica for Windows 10, StatSoft, Inc., Tulsa, USA) of effect of distance from the road and differences between plots were performed by the analysis of variance ANOVA followed by the Tukey's test. Trends were tested by linear regression with least squares method. Layers were compared at each plot by the Student *t*-test.

RESULTS AND DISCUSSION

Effects of road salting on soil chemistry were clearly apparent at both sites (Table 1). The most apparent effects were detected at 1 m, rarely at 5 m distance from the road, which confirmed the literature findings (Lundmark and Olofsson 2007, Zehetner et al. 2009) that effects of road salting on soil chemistry are mostly limited to the distance up to 10 m.

At both sites, pH values were apparently increased at 1 m plot. At the KOK site, pH was continuously decreasing with increasing distance from the road. At the KRK site, pH dropped to naturally acidic values at 5 m with no further change. At 1 m plot, Na⁺ concentrations were several times higher than at more distant plots, at both sites in all types of extracts. At the KRK site, strong increase of Na⁺ was also clearly apparent at 5 m from the road when compared with 20 m plot or control. From increased Na⁺ levels, increased BS might be expected, because this relationship was reported several times for salinized soils (Czerniawska-Kusza et al. 2004, Ramakrishna and Viraraghavatan 2005). This was also confirmed by our results: increased BS (both in BaCl₂ and Mehlich III) at 1 m plot was observed when compared to more distant plots. However, this was much more evident at the KRK site, because forest soil was naturally less basesaturated. There was continuous BS decrease with increasing distance from the road at the KOK site. Increase of Na⁺ and pH were stronger in spring sampling which indicates actual influence after winter road maintenance. On the other hand, BS changes were similar in autumn and spring which indicated that the changes in soil sorption

Table 1. Soil chemical properties at Kokořínsko protected landscape (KOK) and Krkonoše natural park (KRK) sites in autumn 2009 and spring 2010

		1											1						'			
	Sam	Distance		ر				,	Water 1:5	:5		Gilm	Gilman (0.1 mol/L BaCl ₂)	nol/L Ba	CI_2				Mehlich III	th III		
Site	pling	from the road	Layer	org	Ntot		$pH_{ m H_2O}$ $pH_{ m KCl}$	Cl-	Na+	Ca^{2+}	Na^{+}	K^{+}	Ca^{2+}	${\rm Mg^{2+}}$	CEC	BS	Na+	K^{+}	Ca^{2+}	${\rm Mg^{2+}}$	CEC	BS
	time	(m)		3)	(%)						(mg/kg)				(Illeq/ kg)	(%)		(mg/kg)	kg)		kg)	(%)
		1		5.3	0.33	7.4	9.9	18	153	96	184	230	3580	199	204	86	490	466	4383	192	277	26
		2		5.1	0.50	7.2	8.9	100	121	226	148	78	5260	220	293	26	164	124	5052	184	293	95
		10	0-5	5.4	0.59	9.9	6.4	153	137	149	196	47	5160	225	292	92	367	77	4427	415	311	88
	autumn	15		7.5	0.76	6.5	6.1	185	114	251	152	94	0909	349	341	86	122	151	5875	271	365	68
		2		3.6	0.34	7.2	6.9	84	115	175	78	27	4520	183	248	26	88	46	4540	147	253	96
		10	5-15	4.0	0.36	7.1	6.7	91	86	94	72	23	3480	158	230	82	223	30	3424	144	210	92
101		15		3.1	0.38	6.5	0.9	98	48	101	120	35	3980	199	245	88	268	36	3728	187	249	98
NON		1		4.0	0.31	7.7	7.1	19	318	86	347	293	4920	88	303	87	616	009	4319	181	283	96
		2		2.8	0.56	7.3	6.9	195	113	472	53	109	8180	183	399	107	95	237	6133	184	352	94
		10	9-0	5.4	09.0	6.9	6.5	51	91	208	43	43	6840	208	365	66	40	112	4668	195	290	88
	spring	15		9.6	0.88	9.9	6.3	263	88	448	155	109	8040	279	412	104	104	231	6229	165	381	88
		2		2.4	0.45	7.5	7.0	48	96	287	9	12	0929	158	356	66	92	26	5517	147	311	94
		10	5-15	3.8	0.40	6.7	6.4	39	82	131	36	4 >	4880	140	310	82	29	51	3423	135	212	87
		15		5.5	0.51	6.4	0.9	52	62	149	130	< 4	5240	151	245	112	< 1	52	3737	153	234	85
		1		4.3	0.22	7.4	6.3	16	154	23	428	31	1716	336	129	68	477	42	1310	304	119	94
		2		36.2	1.46	3.7	2.8	77	119	85	146	86	1314	284	207	46	242	207	606	241	308	26
		20	JO	40.4	1.79	3.6	2.9	47	18	52	10	74	1066	184	152	46	133	253	747	155	354	18
	autumn	C		36.5	1.68	4.5	3.5	26	22	09	116	129	276	93	230	13	235	249	287	92	292	13
		2		19.8	0.95	3.8	2.9	73	136	222	112	51	370	113	174	19	373	100	327	103	164	27
		20	Oh	22.3	1.12	3.6	2.7	16	17	29	4	22	326	06	188	13	80	118	319	81	233	12
707		C		28.7	1.46	4.0	3.5	24	16	41	92	62	366	29	199	15	139	118	257	92	186	15
NNN		1		4.1	0.29	7.8	9.9	NA	309	33	904	< 4	954	151	106	[89	1230	72	1032	176	131	92
		2		41.7	1.71	4.4	3.8	103	230	162	352	168	2820	351	290	62	341	336	2036	359	379	41
		20	JO	42.6	0.91	4.0	3.6	74	46	143	10	203	1476	201	258	37	< 1	436	1192	199	426	20
	spring	C		42.9	1.73	5.9	5.2	78	51	166	< 2	230	829	118	244	20	< 1	436	647	129	337	16
		22		27.3	09.0	3.9	3.0	84	250	103	304	99	644	201	299	20	334	176	575	166	283	22
		20	Oh	23.0	0.55	3.5	2.7	30	30	116	< 2	29	384	06	288	10	< 1	164	467	78	263	13
		C		33.6	1.78	4.1	3.3	06	115	109	113	152	310	103	296	11	< 1	316	445	119	318	13

properties are rather persistent. In general, Na⁺ levels as well as BS were lower or same in deeper soil layer at the most plots.

Chlorides showed strongly increased levels at plots further from the road which confirms they are more mobile in the soil than Na⁺. Increased levels were apparent at 5 m plot at the KRK site when compared to the control plot and 20 m plot. Levels of chlorides at the KOK site increased generally with the increasing distance from the road with exception of 10 m plot in spring. Chloride content was generally lower in deeper soil layers.

Chloride and Na⁺ levels at both sites and most of the plots might be alarming; it was reported that plant damage may occur at 16 mg/kg Na⁺ and 30 mg/kg Cl⁻ (Environment Canada 2004).

 $\rm C_{org}$ and $\rm N_{tot}$ were apparently increasing with increasing distance from the road at the KOK site. This is probably not attributed to the road salting but this behavior should be considered when interpreting soil microbial parameters.

Soil microbial parameters were under focus in our study to observe if winter road salting can negatively affect soil microbial communities. It was found, that generally microbial parameters showed differences between sampling plots and some interesting trends related to the distance from the road (Figures 1 and 2).

At both sites, microbial biomass ($C_{\rm bio}$) was always significantly higher at more distant plots than at 1 m plot. While this observation was found only for top layer at the KOK site, it was valid for both layers at the KRK site. Significant positive correla-

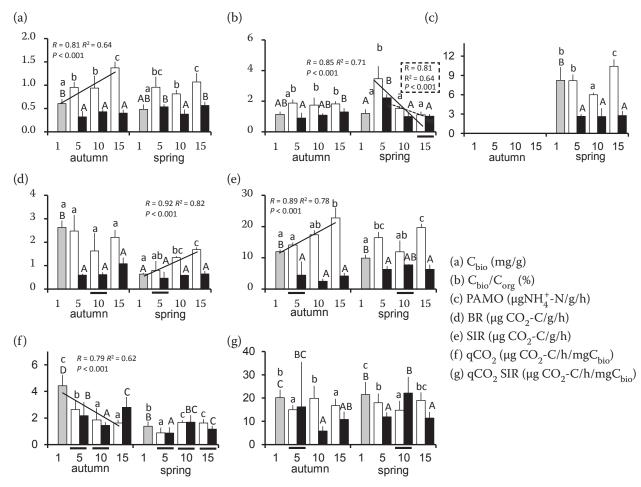


Figure 1. Soil microbial properties at Kokořínsko protected landscape (KOK) site in autumn 2009 and spring 2010. Numbers below the columns show the distance from the road in meters. Grey column shows the 1 m plot (0-15 cm layer). White and black columns show layers of 0-5 cm and 5-15 cm, respectively. Bars show standard deviations. Same letters above the columns indicate an insignificant (P > 0.05) difference between plots based on the Tukey's test. Small or capital letters are used for the top or deeper layer, respectively. Thick line below couple of white and black columns indicates an insignificant (P > 0.05) difference between the layers based on the Student t-test. Skew lines and text boxes show linear regression of parameter versus distance, where significant (solid or dashed line and box border are used for the top or deeper layer, respectively)

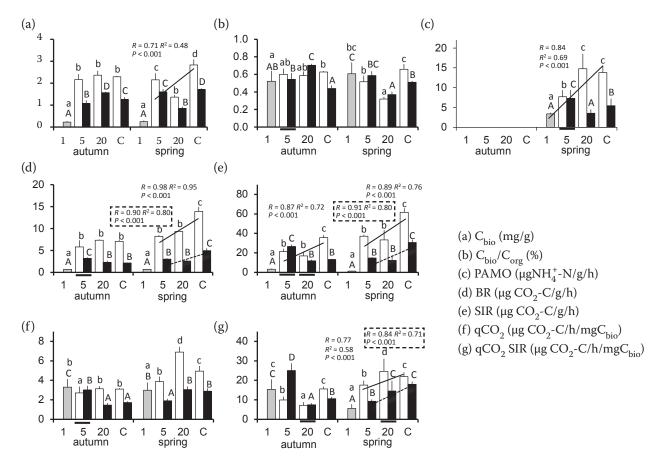


Figure 2. Soil microbial properties at Krkonoše natural park (KRK) site in autumn 2009 and spring 2010. Numbers below the columns show the distance from the road in meters and C is the control plot. Grey column shows the 1 m plot (0–15 cm layer). White and black columns show Of and Oh horizons, respectively. Bars show standard deviations. Same letters above the columns indicate an insignificant (P > 0.05) difference between plots based on the Tukey's test. Small or capital letter are used for the top or deeper layer, respectively. Thick line below couple of white and black columns indicates an insignificant (P > 0.05) difference between the layers based on the Student t-test. Skew lines and text boxes show linear regression of parameter versus distance, where significant (solid or dashed line and box border are used for the top or deeper layer, respectively)

tion with the distance was observed at the KOK site in autumn (R = 0.81) and at the KRK site in spring (R = 0.71). These trends must be interpreted carefully, because soil microbial biomass is strongly influenced by organic carbon in soil (C_{org}) , which may mask the effects of salting. To eliminate the impact of C_{org} on the observed trends, microbial quotient $C_{\text{bio}}^{\text{org}}/C_{\text{org}}$ was calculated. Significantly lower values of $C_{\text{bio}}/C_{\text{org}}$ at 1 m plot than at further plots were found at the KOK site in autumn and spring. At the KRK site, the microbial quotient was not systematically changing with the distance. A significant decrease of C_{bio}/C_{org} from 5 m plot to 15 m plot at the KOK site in spring was found in both layers (R = 0.85 and R = 0.81), but this was probably caused by C_{org} trend at this site (Table 1). At the KRK site in spring, strongly decreased value was observed at 20 m plot from unknown reasons. Decreased values of the microbial quotient indicate a stress situation (Anderson and Domsch 1989), which might be the case at 1 m plot at the KOK site in our study.

With only exception of basal respiration at the KOK site in autumn, both basal respiration (BR) and substrate induced respiration (SIR) showed a significant increase of the values with the increasing distance from the road or, at least, significantly higher values at further plots than at 1 m plot (Figures 1 and 2). These trends were not apparent for deeper layers with exception of the KRK site in spring (significant positive correlation with increasing distance from the road; R = 0.91). The observed trends for BR and SIR could originate from trends of C_{bio}. To avoid this influence, biomass-specific respiration was calculated - metabolic quotient qCO₂ and qCO₂-SIR. They showed much less clear relationships with the distance from the road in most cases (Figures 1 and 2), which confirms that $C_{\rm bio}$ was partially responsible for trends of BR and SIR. This was not the case for SIR at the KRK site in spring, where trends of SIR were confirmed. Interesting observation was found for qCO₂ at the KOK site in autumn: an increase of the values with decreasing distance to the road (R=0.79). This might indicate stress from road salting, because an increase of the qCO₂ values was reported in literature as indication of higher maintenance energy of soil microorganisms induced by stress conditions (Anderson and Domsch 1993).

Potential ammonification (PAMO) as a marker of the important process of N-transformation in soil showed a significant increase with increasing distance (R = 0.84) at the KRK site (Figure 2). Significantly decreased PAMO was observed at 5 m plot when compared with the control or 20 m plot. This might be an inhibition due to increased Na⁺ level and consequent changes in soil chemistry. However, this trend was not found for PAMO in deeper layers.

A negative impact of soil salinization on soil microbial characteristic (biomass, qCO₂) was observed also in other studies. Yuan et al. (2007) reported that higher salinity in arid soil in China resulted in a smaller, more stressed, microbial community, which was less metabolically efficient. Soil nitrification was significantly reduced at a concentration of about 100 mg/kg sodium and 150 mg/kg chlorides in study of Butler and Addison (2000). Černohlávková et al. (2008) reported a significantly reduced microbial biomass and respiration activity at the roadside with increased levels of Na⁺ (up to 100 mg/kg) and pH (up to 8).

Effects of road salting on soil microbes were also confirmed by our results. In several cases, microbial biomass or/and its activities increased significantly with increasing distance from the road and in one case there was a stress indication by eco-physiological coefficient qCO $_2$. Some changes might indicate long-term effects (decrease of microbial biomass and organic carbon in soil) and other changes short-term effects (changes in PAMO or stress indication by qCO $_2$). Although other case studies are necessary, it is now apparent that soil microbial communities must be considered when ecological effects of road salting are assessed.

REFERENCES

Alef K., Kleiner D. (1987): Applicability of arginine ammonification as indicator of microbial activity in different soils. Biology and Fertility of Soils, 5: 148–151.

- Anderson T.H., Domsch K.H. (1989): Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry, *21*: 471–479.
- Anderson T.H., Domsch K.H. (1993): The metabolic quotient for ${\rm CO_2}$ (qCO₂) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, 25: 393–395.
- Benbow M.E., Merritt R.W. (2004): Road-salt toxicity of select Michigan wetland macroinvertebrates under different testing conditions. Wetlands, 24: 68–76.
- Butler B.J., Addison J. (2000): Biological effects of road salts on soils. Report submitted to the Environment Canada CEPA Priority Substances List. Environment Canada, Quebec.
- Černohlávková J., Bartoš T., Hofman J., Anděl P. (2008): Effects of road deicing salts on soil microorganisms. Plant, Soil and Environment, 54: 479–485.
- Czerniawska-Kusza I., Kusza G., Duzyńsky M. (2004): Effect of deicing salts on urban soils and health status of roadside trees in the Opole region. Environmental Toxicology, 19: 296–301.
- Dilly O. (2006): Ratios of microbial biomass estimates to evaluate microbial physiology in soil. Biology and Fertility of Soils, 42: 241–246
- Environment Canada (2004): Code of practice for the environmental management of road salts. Ottawa, Canada.
- ISO 10381-6 (1993): Soil quality Sampling. Guidance on the collection, handling and storage of soil for the assessment of aerobic microbial processes in the laboratory. Geneve, Switzerland.
- ISO 10390 (2005): Soil quality Determination of pH. Geneve, Switzerland.
- ISO 11261 (1995): Soil quality Determination of total nitrogen– Modified Kjeldahl method. Geneve, Switzerland.
- ISO 13536 (1995): Soil quality Determination of the potential cation exchange capacity and exchangeable cations using barium chloride solution buffered at pH = 8.1. Geneve, Switzerland.
- ISO 14235 (1998): Soil quality Determination of organic carbon by sulfochromic oxidation. Geneve, Switzerland.
- ISO 14240-2 (1997): Soil quality Determination of soil microbial biomass Part 2: Fumigation-extraction method. Geneve, Switzerland.
- ISO 14240-1 (1997): Soil quality Determination of soil microbial biomass. Part 1: Subtrate-induced respiration method. Geneve, Switzerland.
- ISO 16072 (2002): Soil quality Laboratory methods for determination of microbial soil respiration. Geneve, Switzerland.
- ISO 9297 (1989): Water quality Determination of chloride Silver nitrate titration with chromate indicator (Mohr's method). Geneve, Switzerland.
- Lundmark A., Olofsson B. (2007): Chloride deposition and distribution in soils along a deiced highway Assessment using different methods of measurement. Water, Air and Soil Pollution, 182: 173–185.
- Ramakrishna D.M., Viraraghavatan T. (2005): Environmental impact of chemical deicers a review. Water, Air and Soil Pollution, 166: 49–63.

- Thunqvist E.L. (2004): Regional increase of mean chloride concentration in water due to the application of deicing salt. Science of the Total Environment, 325: 29–37.
- Yuan B.C., Li Z.Z., Liu H., Gao M., Zhang Y.Y. (2007): Microbial biomass and activity in salt affected soils under and conditions. Applied Soil Ecology, *35*: 319–328.
- Zbíral J., Honsa I., Malý S., Čižmár D. (2004): Soil Analysis III. Central Institute for Supervising and Testing in Agriculture, Brno, 199.
- Zehetner F., Rosenfellner U., Mentler A., Gerzabek M.H. (2009): Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water, Air and Soil Pollution, 198: 125–132.

Received on January 25, 2012

Corresponding author:

Doc. RNDr. Jakub Hofman, Ph.D., Masarykova univerzita, Přírodovědecká fakulta, Centrum pro výzkum toxických látek v prostředí, Kamenice 126/3, $625\ 00\ Brno$, Česká republika

phone: + 420 549 494 267, fax: + 420 549 492 840, e-mail: hofman@recetox.muni.cz