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Crude protein content (CPC) in rice grain, as an 
important component of rice nutritional quality, 
is important for health of people whose main food 
in daily life is rice (Tang et al. 2004). Accurate and 
timely estimation of the CPC of rice grain can help 
farmers make appropriate decisions concerning 
fertilizer application, rice variety selection, and 
harvest classification (Diker and Bausch 2003, 
Wang et al. 2004). Determining CPC with Kjeldahl 
and combustion methods is a commonly used 
laboratory method. This laboratory method is 
accurate and reliable, but usually time consuming 
and costly (Li et al. 2006, Starks et al. 2006a,b). 

In contrast, remote sensing could provide spatial 
and temporal measurements of surface properties 
and was recognized as a reliable method for the 
estimation of various variables related to physiol-
ogy and biochemistry (Hinzman et al. 1986, Diker 
and Bausch 2003).

Many studies described the capability of remote 
sensing technology to rapidly measure many crop 
nitrogen content (Rondeaux et al. 1996, Haboudane 
et al. 2004, 2008). At the leaf level, values derived 
from spectral measurements admittedly depend 
predominantly on the amount of chlorophyll. 
The best relationships between chlorophyll and 
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reflectance measurements were obtained (Zhou 
and Wang 2003, Cartelat et al. 2005). At the canopy 
level, spectral measurements also appear to cor-
relate well with total aerial N (Lukina et al. 2001, 
Zhao et al. 2004, Mistele and Schmidhalter 2008). 
At the landscape scales, the spectral reflectance 
of TM channel 5 derived from canopy spectra or 
image data at grain filling stage was all significantly 
correlated to grain protein content in wheat (Zhao 
et al. 2005). These studies suggest that remotely 
sensed data could be used to monitor plant nitrogen 
status from leaf level to landscape level.

Multiple linear regression (MLR) is widely used to 
regress reflectance measures against crop nitrogen 
concentrations. But, as well known, low estimate 
accuracy is its drawback (Martin and Aber 1997, 
Yi et al. 2007). Moreover, the selected wavelengths 
in stepwise regression are not always related to the 
biochemical of interest but to wavelengths that are 
related to biomass amount or other biochemicals (Yi 
et al. 2007). Compared with MLR, artificial neural 
networks (ANNs) have the ability to deal complicated 
spectral information with target attributes without 
any constraints for sample distribution making 
them ideal for describing the intricate and complex 
nonlinear relationships which exist between spec-
tral signatures and various crop conditions (Gorr 
et al. 1994, Kimes et al. 1998). In addition, partial 
least squares regression (PLSR) is also an impor-
tant statistical method that bears some relation to 
principal components regression (PCA), instead of 
finding hyperplanes of maximum variance between 
the response and independent variables. It can use 
fewer new variables than the original ones to figure 
out the difficult analysis such as the superposi-
tion of a spectral band and find a linear regression 
model by projecting the predicted variables and the 
observable variables to a new space (Rännar et al. 
1994, Tenenhaus et al. 2005).

Previous studies implemented the regression 
model between reflectance and plant nitrogen by 
using MLR, ANNs and PLSR (He et al. 2006, Yi 
et al. 2007). However, the predictive ability of the 
three modelling methods using fresh canopy-level 
spectral reflectance has not been well compared. 
Our studies showed that the ANNs model provided 
better accuracy in retrieval of rice neck blasts 
compared with the results from the MLR model 
(Zhang et al. 2011). The objectives of the present 
investigation were to compare the predictive power 
of MLR, ANNs and PLSR methods using different 
models, i.e., (i) the R-MLR (stepwise multiple linear 
regression) model based on reflectance, (ii) the 
R-ANN model based on spectral reflectance, and 

(iii) R-PLSR model based on spectral reflectance, 
and to finally propose a suitable estimation model.

MATERIAL AND METHODS

Field experiments. The field experiments were 
conducted at State Monitoring Station of Rice Soil 
Fertility and Fertilizer Effect, Haining, Zhejiang 
Province, China, which is located at 120°25'E, 
30°26'N. Rice (Zhegeng 22) was examined in a 
two-year field experiment (years 2009 and 2010). 
The average annual temperature was 15.3°C and 
the average annual precipitation was 1350 mm 
per year with the highest values occurring in the 
summer. The experiments were conducted on dif-
ferent fields each about 1 ha in size. Heterogeneous 
fields were chosen to obtain differences in both the 
N status and biomass. The experimental design 
consisted of five fertilization rates (0, 80, 120, 
160 and 200 kg N/ha) each with 10 replicates for 
a total of 50 plots.

Measurements of spectral reflectance. Ava-
Spec-2048 spectrometer (Avantes inc., Apeldoorn, 
Netherlands) was used to get spectral of all canopy 
reflectance. This spectrometer is fitted with a 25 field 
of view fiber optics, operating in the 200–1100 nm 
spectral region with a sampling interval of 1.4 nm 
and spectral resolution of 1.2 nm. The measure-
ments were carried out from a height of 1.0 m 
above the canopy and 0.44 m view diameter under 
clear sky conditions between 10:00 h and 14:00 h 
(Beijing local time). Measurements of vegetation 
radiance were made at 10 sample sites in each 
plot, with each sample averaging 20 scans at an 
optimized integration time. The saved spectrum 
file contained continuous spectral reflectance at 
0.6 nm step over the band region of 200–1100 nm. 
A panel radiance measurement was taken before 
and after the vegetation measurement by two 
scans each time.

Measurements of crude protein content (CPC). 
In September 2009 and 2010, after the canopy 
spectral measurements, rice grain were put into 
an oven to dry at 105°C for half an hour and then 
at 70°C till the constant weight was acquired. The 
dry grains were then ground with a mortar and 
pestle for N measurement. Nitrogen concentration 
(N) was determined by Kjeldahl after acid digest 
and the results were expressed in mg N/g grain 
dry weight. The CPC in rice grain was computed 
by N × 5.95.

Data analysis. Spectral data were firstly ex-
ported from binary by using the manufacturer’s 
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program of AvaSoft 7.3 for USB 2 (Apeldoorn, the 
Netherlands). Reflectance data were smoothed 
with a five-point moving average to suppress in-
strumental and environmental noise in the data 
before the data were further analyzed.

Because spectral reflectance often contains large 
amounts of redundant information, the main pur-
pose of principal component analysis (PCA) is 
to build the linear combinations of the original 
variables that represent the most original varia-
tions of the data set being investigated. After key 
spectral bands were selected by the PCA method, 
the predicted models were built by MLR, ANN and 
PLSR model. The precision of regression models 
was assessed by root mean square error of training 
(RMSEt), root mean square error of prediction 
(RMSEp), correlation coefficient of training (Rt

2), 
correlation coefficient of predication (Rp

2), and 
residual prediction deviation (RPD).

RESULTS

The canopy in rice under different nitrogen 
fertilization levels exhibited a different raw re-

flectance in the 520–680 nm and 720–1000 nm 
spectral regions (Figure 1). Because excessive 
spectral bands and noise interference may affect 
precision of regression model, principal component 
analysis (PCA) method was used to reduce original 
input variables dimension. In other words, the 
number of variables can be reduced by removing 
the lower-level components without any notable 
loss of information contained in the original data 
set by PCA. Based on PCA, the first principal 
component represents 71.20% of the spectral in-
formation, and the first four principal components 
contain information as high as 94.48%, while the 
other principal components contain less informa-
tion (Table 1).

After principal components selected by PCA, 
the predicted models were built by multiple linear 
regressions (MLR), artificial neural network (ANN) 
and partial least squares regression (PLSR) method 
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Figure 1. Spectral reflectance 
of canopy in rice changing with 
wavelength

Table 1. Percentage of explained variance for the first 
four principal components (PCs)

PC1 PC2 PC3 PC4

Explained 
variance (%) 71.20 16.49 5.57 1.22

Cumulative 
variance (%) 71.20 87.69 93.26 94.48 Figure 2. Bias changes with the point number of hid-

den layer
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respectively. For MLR model, factor scores of the 
first four principal components scores were used 
as independent variables to conduct regression. 
The linear model was expressed as equation:

CPC = 9.91 – 0.0026 × PC1 – 0.0011 × PC2 + 
+ 0.0035 × PC3 – 0.078 × PC4

For ANN model, which included three layers 
network architecture, consisting of one input layer, 
one hidden layer, and one output layer, was es-
tablished in MATLAB 6.5 (Stanford, USA). Then, 
first four principal components scores were put as 
input variables, and CPC as target variable. The 
number of neurons in the hidden layer is optimized 
by using the training, validation, and testing data 
sets. A total of 102 samples out of 152 samples 
were used for training, and the rest was equally 
divided for validation. The bias was used to select 
the optimum number of neurons in the hidden 
layer. The numbers of neurons in the hidden lay-
ers were determined when the minimum values of 
bias were found (Figure 2). After time-consuming 
trials, the ANN model with a 4-5-1 architecture 
was determined. 

For PLSR model, spectra were imported into 
Unscramble V9.7 software (CAMO, Oslo, Norway). 
The region of 400–1000 nm was analyzed by PLSR 
by mean-centering, normalizing. Model was con-
structed using CPC standards in order to account 
for spectral differences based on matrix. Model 
was also cross-validated using a leave-one-out 
approach. Key bands were identified and PLSR 
model was calculated.

The (RMSEt), RMSEp, Rt
2, Rp

2 and RPD for cali-
bration and validation data sets for all models 
are summarized in Table 2. It could be seen that 
the best result was obtained by the PLSR model, 
which was the case for both the calibration and 
the validation sets, and followed by the ANN, and 
MLR models (Figures 3–5, Table 2) 

DISCUSSION

For a typical crop canopy, reflectance is low 
between the 480- and 680- nm region due to the 
strong absorption by chlorophylls and other pig-
ments, but is high in the NIR region due to the 
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Figure 3. Scatter plots of measured versus predicted crude protein content (CPC) for linear regression based on 
multiple linear regressions (MLR). (a) calibration data set and (b) validation data set

Table 2. Results of rice seed protein models in calibration and validation

Model
Calibration (n = 102) Validation (n = 50)

rc RMSEc Bias rp RMSEp Bias RPD

MLR 0.8992 0.5701 0.0041 0.9037 0.4281 0.0031 3.99

ANN 0.9172 0.3845 0.0032 0.9201 0.2525 0.0024 5.06

PLSR 0.9525 0.2530 0.0025 0.9570 0.1817 0.0015 6.83

MLR – multi regression model; ANN – neural network model; PLSR – partial least squares regression; rc – cor-
relation coefficient of calibration; rp – correlation coefficient of validation; RMSEc – mean square root of interac-
tive calibration; RMSEp – mean square root of interactive validation; RPD – relative stand error of predication

(a) (b)
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microcellular structures in leaf material and canopy 
structures (Thomas and Oerther 1972, Feng et al. 
2008). In this study, our results showed that there 
were two obvious band ranges between 520–680 nm 
and 720–1000 nm observed (Figure 1). Similar 
results were reported in previous studies (He et 
al. 2006, Li et al. 2006, Yi et al. 2007). 

For the three models, the results of prediction 
of MLR, ANN and PLSR were in order of PLSR > 
ANN > MLR (Figures 3–5, Table 2). The predic-
tion accuracy of the nonlinear model is better than 
the linear model. There was over fitting in MLR 
method because only some spectrum information 
was used, while other spectrum information was 
lost. Compared to MLR, the ANN has a strong 
advantage to fit the nonlinear problem. Some re-
searchers implemented the ANN method for the 
analysis of spectral data, and for improving the 
inversion precision of crop biochemical param-
eters (He et al. 2006, Yi et al. 2007, 2010, Zhang 
et al. 2011). At the same time, we also found that 

the node number in hidden layer affected predic-
tion bias (Figure 2). It is implied that the fitting 
accuracy of ANN model was less than that of 
PLSR model, which may be because of its over 
fitting and reducing generalization ability. The 
most important feature of PLSR model is that it 
can use all spectrum information, compress the 
sample quantity required, integrate highly related 
wavelength point into an independent variable, 
and establish regression model based on a few 
independent variables. PLSR model could avoid 
over fitting phenomenon through the internal 
inspection, and its fitting precision is higher than 
those of ANN and MLR.

In summary, this study showed the promising 
potential of CPC monitoring using canopy-level 
spectral reflectance and the three algorithms. 
Spectrometer (instrument equipment), chemical 
measurement software (data analysis) and model 
application (model inversion) were integrated. In 
addition, our study also improves the accuracy of 

Figure 4. Scatter plots of measured versus predicted crude protein content (CPC) for linear regression based on 
artificial neural network (ANN). (a) calibration data set and (b) validation data set
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Figure 5. Scatter plots of measured versus predicted crude protein content (CPC) for linear regression based on 
partial least squares regression (PLSR). (a) calibration data set and (b) validation data set
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spectral information acquisition and reliability of 
model building (Yi et al. 2010). As a method of data 
reducing and representation, PCA was very useful 
to analyze spectral reflectance data. However, the 
spectral response properties of vegetation canopy 
was also found to depend on atmospheric (e.g., il-
lumination, cloudy shadow), edaphic (e.g., soil type, 
soil moisture), and biotic (e.g., crop variety, leaf area 
index) conditions (Sankaran et al. 2010). Further 
research is still needed to solve these questions.
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