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Drought is one of the major environmental fac-
tors that can limit the growth and physiological 
characteristics of plants and recent global cli-
mate change has made this situation more serious 
(Martínez et al. 2003, Ren et al. 2007, Tadina et al. 
2007, Wu et al. 2009). It was shown that drought 
may increase the formation of free radicals of 
oxygen in plant cells. These reactive oxygen spe-
cies (ROS) involved superoxide radicals (O2

•–), 
hydrogen peroxide (H2O2) and hydroxyl radicals 
(OH•) (Collakova and DellaPenna 2003, Wu et al. 
2008), which mediate the degradation of membrane 
components, the oxidation of protein sulphydryl 
groups, the formation of gel phase domains, and 
the loss of membrane function (Blokhina et al. 
2003, Jaleel et al. 2009).

To protect cellular membranes and organelles 
from the damaging effects of ROS, plants de-
veloped different non-enzymatic and enzymatic 
antioxidants (Ali et al. 2008). It was reported that 

the non-enzymatic antioxidants include lipid 
soluble membrane associated antioxidants (e.g., 
α-tocopherol and β-carotene), and water soluble 
reductants (e.g., glutathione, ascorbate and pheno-
lics) (Jaleel et al. 2009). The antioxidant enzymes 
such as superoxide dismutase (SOD, EC 1.15.1.11), 
peroxidase (POD, EC 1.11.1.7) and catalase (CAT, 
EC 1.11.1.6) were considered as a defensive team, 
whose combined purpose is to protect cells from 
oxidative damage (Mittler 2002). It was accepted 
that SODs are localized in chloroplasts, mitochon-
dria, peroxisomes and the cytosol; POD activities 
are distributed in vacuoles, the cell walls and the 
cytosol, whereas CAT enzymes are presented 
only in peroxisomes (Vaseva et al. 2012). The 
drought-induced changes in activities of SOD, 
POD and CAT were detected in a large number 
of plant species, such as Oryza sativa (Srivalli et 
al. 2003), Sesamum indicum (Fazeli et al. 2007), 
Carthamus tinctorius (Hojati et al. 2011), Mentha 
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pulegium (Hassanpour et al. 2012), and Trifolium 
pratense (Vaseva et al. 2012). These findings suggest 
that the induction of ROS-scavenging enzymes, 
such as SOD, POD and CAT, is the most common 
mechanism of drought tolerance for detoxifying 
ROS synthesized.

Wheat is one of the most important grain crops 
in the world and it is widely cultivated in the arid 
and semi-arid areas of Northern China. Drought 
seriously affected growth and development of 
wheat in many regions (Wu et al. 2009). Genotypic 
variation observed in wheat is a factor that con-
tributes to their wide range of adaptation capacity 
to limited water regions. Therefore, it is impera-
tive to compare the activities of ROS-scavenging 
enzymes among wheat genotypes with different 
drought tolerance, as it will tell us the intrinsic role 
of antioxidant enzymes against drought tolerance.

Sorbitol, a six carbon sugar alcohol, was used 
in osmotically induced water stress studies in 
plants (Hsu and Kao 2003, Kolarovič et al. 2009, 
Jain et al. 2010). The main objective of this study 
was to investigate the responses of growth and 
antioxidant enzymes to osmotic stress induced 
by sorbitol in two wheat cultivars with different 
tolerance to drought. The results suggest that the 
drought tolerant cultivar Heshangtou (HST) has 
higher activities of antioxidant enzymes such as 
POD and CAT to cope with oxidative damage in-
duced by osmotic stress compared to the drought 
sensitive cultivar Longchun 15 (LC15).

MATERIAL AND METHODS

Plant materials, growth conditions and treat-
ments. Seeds of two wheat (Triticum aestivum L.) 
cultivars, one drought tolerant (Heshangtou, HST) 
and the other drought sensitive (Longchun 15, 
LC15), were collected in the Yongdeng County, 
Gansu Province, China in August 2011. Seeds of 
both cultivars were germinated at 25°C on filter 
paper wetted with sterile water in Petri dishes 
(2 cm high × 15 cm diameter) – germination took 
2–3 days. After emergence, seedlings were cul�-
tured in the same dishes but with the modified 
Hoagland’s solution containing 2.5 mmol/L KNO3, 
0.5 mmol/L NH4H2PO4, 0.25 mmol/L MgSO4·7 H2O, 
2.5 mmol/L Ca(NO3)2·4 H2O, 0.5 mmol/L Fe-
citrate, 92 μmol/L H3BO3, 18 μmol/L MnCl2·4 H2O, 
1.6 μmol/L ZnSO4·7 H2O, 0.6 μmol/L CuSO4·5 H2O, 
and 0.7 μmol/L (NH4)6Mo7O24·4 H2O. Once plants 
had two leaves, they were transferred to black-
painted plastic containers with the same modified 

Hoagland’s solution. All the seedlings were grown 
in the same chamber. The environmental condi-
tions were as follows: temperature 28°C at day and 
23°C at night, photon flux density 600 µmol/m2/s, 
photoperiod 16/8 h for day/night cycle, and rela-
tive humidity 70%. 15-day-old wheat seedlings 
were used for following osmotic stress for 2 days. 
The Hoagland’s solution was supplemented with 
0, 80, 160, and 240 mmol/L sorbitol; its osmotic 
potential measured by a cryoscopic osmometer 
(Osmomat-030, Gonotec GmbH, Berlin, Germany), 
was 0, –0.25, –0.50, and –0.75 MPa, respectively. 
40 seedlings were grown in each treatment. The 
treatment solution was changed everyday to main-
tain constant of osmotic stress.

Assay of growth parameters. At the end of treat-
ments, 8 plants from each group were divided into 
separate shoot and root fractions. Fresh weights 
(FW) of shoot and root were weighed, and lengths 
of shoot and root were measured. The samples 
were then dried in oven at 80°C for 72 h and dry 
weights (DW) were determined.

Determination of shoot malondialdehyde 
(MDA) content. The MDA content in shoot of 
wheat seedlings was measured using the thiobar-
bituric acid (TBA) protocol as described by Peever 
and Higgins (1989) with slight modifications. The 
absorbance at 450, 532, and 600 nm (A450, A532, 
and A600, respectively) was determined using an 
ultraviolet spectrophotometer (UV-2102C, Unico 
Instrument Co., Shanghai, China). The content 
of MDA in nmol/g FW was calculated according 
to the following equation as described by Bao et 
al. (2009):

MDA content (nmol/g FW) = C (μmol/L) × V (L)/FW 
(g) × 1000

Where: C = 6.45 × (A532 – A600) – 0.56 A450, and V – volume  
of extracting solution.

Assay of SOD, POD, and CAT activities in 
shoot. SOD activity was determined according 
to the method as described by Beauchamp and 
Fridovich (1971). One unit of SOD was defined 
as the enzyme activity that inhibited the photo-
reduction of nitroblue tetrazolium (NBT) to blue 
formazan by 50%. POD activity was detected ac-
cording to the method as described by Sakharov 
and Ardila (1999) with slight modifications. A unit 
of POD activity was expressed as the change in 
absorbance at 470 nm per min. CAT activity was 
measured following the change of absorbance at 
240 nm for 1 min due to H2O2 (Aebi 1984). The 
activities of SOD, POD, and CAT were expressed 
as enzyme units per gram fresh weight (U/g FW).

-
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Statistical analysis. Data were performed by 
one-way analysis of variance (ANOVA) using 
statistical software (SPSS 13.0, Chicago, USA). 
Duncan’s multiple range test was used to detect 
asignificant difference between means at a sig-
nificant level of P < 0.05.

RESULTS AND DISCUSSION

The results of present investigation demonstrate 
that with the increase of osmotic stress shoot length 
in both wheat cultivars showed decreasing trend, to 
a lesser degree in more tolerant cultivar HST than in 
more sensitive one LC15. For example, under osmotic 
stress of –0.75 MPa shoot length of HST was 89% 
of the control while that of LC15 was 79% (Figure 
1a). It seems that osmotic stress has some slight 
effect on root length in both cultivars (Figure 1b). 
There was no significant effect on fresh weight of 
two cultivars seedlings exposed to osmotic stress of 
–0.25 MPa, whereas osmotic stress of –0.75 MPa 
significantly decreased fresh weight in both cultivars 
(Figure 1c). Dry weights of HST and LC15 showed 
similar trends under osmotic stress (Figure 1d). It 
was demonstrated that sorbitol-induced stress could 
reduce the total chlorophylls, chlorophyll a as well 

as chlorophyll b in maize (Jain et al. 2010). On the 
basis of these results, our findings suggested that 
osmotic stress can inhibit the normal growth and 
development of wheat cultivars.

It is observed that osmotic stress significantly 
increased MDA contents in both wheat cultivars 
(Figure 2a). As MDA is an end product of membrane 
lipid peroxidation (Peever and Higgins 1989, De 
Vos et al. 1991), the content of MDA represents the 
degree of cell membrane damage under osmotic 
stress and is a common physiological indicator in 
evaluation of drought tolerance (Luo et al. 2008). 
It is clear that when subjected to osmotic stress, 
MDA contents of shoot in drought tolerant cultivar 
HST were lower than those in drought sensitive 
one LC15 (Figure 2a). For example, under osmotic 
stress of –0.25 MPa, HST seedlings showed a smaller 
increase of MDA contents than LC15. The lower 
level of MDA in shoot of HST suggests that this 
cultivar is better protected against oxidative dam-
age under osmotic stress than LC15. This result is 
in agreement with results observed by Sairam et 
al. (2005) on salt tolerant genotype of wheat and 
Fazeli et al. (2007) on drought tolerant cultivar of 
sesame (Sesamum indicum L.) under water stress.

SOD is one of several important antioxidant 
enzymes with the ability to repair oxidative dam-

Figure 1. Effects of osmotic stress on shoot (a) and root (b) length, and fresh (c) and dry (d) weight in two wheat 
cultivars Heshangtou (HST) and Longchun 15 (LC15). 15-day-old wheat seedlings were exposed to osmotic 
stress of –0.25, –0.50, and –0.75 MPa for 2 days. Two wheat seedlings were pooled in each replicate (n = 8). 
Values are means ± SE and bars indicate SE
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age caused by ROS (Jaleel et al. 2009). Thus, SOD 
is considered as a key enzyme for maintaining 
normal physiological conditions and coping with 
oxidative stress in the regulation of intracellular 
levels of ROS (Mittler 2002). In this study, although 
osmotic stress of –0.25 MPa had no effects on 
SOD activity of shoot, osmotic stress of –0.50 MPa 
and –0.75 MPa significantly increased its activity 
in both wheat cultivars (Figure 2b). However, no 
significant differences in the SOD activity were 
found between HST and LC15 under either normal 
growth condition or osmotic stress (Figure 2b).

POD activity is considered a useful biomarker 
for environmental stress in examined plant species 
(Jaleel et al. 2009). It is shown that the POD activ-
ity of shoot in the tolerant cultivar HST exposed 
to osmotic stress of –0.25, –0.50, and –0.75 MPa 
was 2.2-, 1.8-, and 1.4-fold of that in correspond-
ing control seedlings, respectively, whereas only 
osmotic stress of –0.75 MPa induced slightly its 
activity in LC15 (Figure 2c). Peroxidases are widely 
distributed in plant tissues where they are involved 
in growth, development, and senescence processes 
of plants (Mittler 2002). In drought-tolerant plant 
species, POD activity was found to be sufficiently 
high to enable the plants to protect themselves 

against oxidative stress (Fazeli et al. 2007, Vaseva 
et al. 2012). Activity of one or more antioxidant 
enzymes generally increases in plants exposed to 
drought conditions, and this elevated activity cor-
relates with increased drought tolerance (Srivalli et 
al. 2003, Hojati et al. 2011, Hassanpour et al. 2012). 
Findings from the present study showed that POD 
activity in the tolerant cultivar HST was higher 
than those in the sensitive one LC15 (Figure 2c). 
A number of studies indicated that POD activity 
response to osmotic stress vary among plant spe-
cies and among different cultivars (Hojati et al. 
2011). It is concluded that the higher activity of 
POD in the tolerant cultivar HST might be better 
to protect proteins, chlorophyll and lipids of some 
parts of plants against ROS attack compared to 
that in the sensitive LC15.

The CAT activity of shoot in the tolerant cul-
tivar HST was increased by 12.1% and 30.4% un-
der osmotic stress of –0.50 MPa and –0.75 MPa 
compared to corresponding control, respectively 
(Figure 2d). Its activity in the sensitive cultivar 
LC15 was increased by 11.9% and 19.1% at osmotic 
stress of –0.50 MPa and –0.75 MPa, respectively 
(Figure 2d). However, osmotic stress of –0.25 MPa 
did not enhance remarkably the CAT activity in 

Figure 2. Effects of osmotic stress on (a) malondialdehyde (MDA) content; (b) superoxide dismutase (SOD) ac-
tivity; (c) peroxidase (POD) activity and (d) catalase (CAT) activity of shoot in two wheat cultivars Heshangtou 
(HST) and Longchun 15 (LC15). 15-day-old wheat seedlings were exposed to osmotic stress of –0.25, –0.50, and 
–0.75 MPa for 2 days. Two wheat seedlings were pooled in each replicate (n = 8). Values are means ± SE and bars 
indicate SE; FW – fresh weight
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both cultivars. CAT is one of the most effective 
antioxidant enzymes that can degrade H2O2 into 
water and molecular oxygen in the peroxysomes, 
where H2O2 is produced from β-oxidation of fatty 
acids and photorespiration (Fazeli et al. 2007). It 
was suggested that the higher activities of CAT 
reduced H2O2 level in the cell and enhanced the 
stability of membranes and CO2 fixation because 
several enzymes of the Calvin cycle in chloroplasts 
are very sensitive to H2O2 (Bhutta 2011). A high 
level of H2O2 can directly inhibit CO2 fixation 
(Yamazaki et al. 2003). It was shown that CO2 
laser pretreatment increased the activity of CAT 
in wheat seedlings under osmotic stress (Qiu et al. 
2011). In this study, CAT activity in HST was sig-
nificantly higher than that in LC15 under osmotic 
stress (Figure 2d). These results suggest that the 
drought tolerant cultivar HST has more catalases 
to protect against oxidative damage caused by 
osmotic stress.

In conclusion, osmotic stress inhibits the growth, 
increases the contents of MDA, and induces the 
activities of SOD, POD, and CAT in both wheat 
cultivars. It is clear that the degrees of growth 
inhibition and oxidative damage in the tolerant 
cultivar HST are less than those in the sensitive 
LC15 under osmotic stress, whereas activities of 
POD and CAT are contrary – they are higher in 
the former than in the latter. These results suggest 
that HST has higher capacity to cope with osmotic 
stress compared to LC15.
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