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Nitric oxide biosynthesis in plants — the short overview

D. Prochazkoval, D. Haisell, D. Pavlikova?

Unstitute of Experimental Botany, Academy of Sciences of the Czech Republic,

Prague, Czech Republic

2Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences

Prague, Prague, Czech Republic

ABSTRACT

In the past two decades, many pathways of nitric oxide biosynthesis have been described. This review offers the

general knowledge of mechanisms of plant nitric oxide biosynthesis.
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With the finding of a number of roles of the gaseous
free radical nitric oxide (NO) in animal cells, many
studies have reported its presence in the plant king-
dom and its diverse function in plant cells. In plants,
NO first came to prominence within the context of
regulating defence during pathogen infection (Mur
et al. 2013b). Afterwards, it was described that NO
is involved in many plant physiological processes,
e.g. in stimulation of seed (Beligni and Lamattina
2000) and pollen (Sirov4 et al. 2011) germination,
floral regulation (He et al. 2004), senescence (Jasid
et al. 2009), stomatal closure (Neill et al. 2008), root
development (Pagnussat et al. 2003, Correa-Aragunde
et al. 2004) etc.

Unfortunately, NO studies in plants lag behind
the studies in animal kingdom. One of the ques-
tions, which was acceptably clarified in animal
cells but remains unclear in plants, is NO bio-
synthesis. In animal organisms, it is nitric ox-
ide synthase (NOS) which converts L-arginine
to L-hydroxyarginine and subsequently to nitric
oxide and citrulline with participation of O, and
NADPH. Three independent animal NOS types
are known: neuronal NOS, inducible NOS which
was originally isolated from macrophages, and
endothelial NOS.

On one hand the indisputable evidence of such
enzyme in plant cells is missing but on the other
hand many other pathways were suggested. This
review tries to offer the general knowledge of
mechanisms of plant NO biosynthesis.

Enzymatic production

Nitrate reductase. The best-characterized
production pathway for NO in plants is nitrate
reductase (NR, EC 1.7.1.1.) pathway. This en-
zyme was found both as a cytosolic form and as
a plasma membrane-bound form (Planchet and
Kaiser 2006). In Arabidopsis, NR is encoded by
two homologous genes, Nial and Nia2 (Wilkinson
and Crawford 1993).

NR normally reduces nitrate to nitrite at the
expense of NAD(P)H but also catalyzes 1-elec-
tron transfer from NAD(P)H to nitrite resulting
in NO formation (Planchet and Kaiser 2006) via
the reaction:

NAD(P)H + 3H,0* +2NO, » NAD(P)* +2NO + 5H,0

The reduction efficiency is low — about 1% of
NR activity (Rockel et al. 2002) but the importance
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of NR as a NO source was demonstrated by using
NR-deficient mutants which produced significantly
lower levels of NO (Planchet et al. 2005).

NR is more pronounced in a low-oxygen envi-
ronment and requires nitrite levels to be in excess
of the natural substrate nitrate. For example for
maize NR, the K, for nitrite is 100 pmol, and ni-
trate is a competitive inhibitor with a K, of 50 pmol
(Rockel et al. 2002). The enzyme is activated by a
decrease in the cellular pH (Kaiser and Brendle-
Behnisch 1995).

Nitrite:NO reductase. A plasma membrane-
bond nitrite:NO reductase (NiNOR), distinct from
the plasma membrane NR, was shown to convert
nitrite to NO in tobacco (Stohr and Stremlau 2006,
Moreau et al. 2010). The K _ (nitrite) for NINOR
reaction is 175 pmol for plant mitochondria (Gupta
et al. 2005). It appears to use cytochrome ¢ as an
electron donor in vitro, but it has yet to be cloned
and fully identified (Wilson et al. 2008).

The plasma membrane-bound NR:NiNOR sys-
tem was suggested to be involved in the sensing
of nitrate availability in the soil (Meyer and Stohr
2002). Furthermore, evidence has recently been
provided that NiNOR mediated NO production
has a role in the regulation of root infection by
mycorrhizal fungi (Moche et al. 2010).

NOS like enzyme. As plants appear able to grow
and to complete their life cycle in the absence
of nitrate and nitrite, e.g., with ammonium as
the only source of nitrogen, they must possess
nitrite-independent, oxidative pathways for NO
production (Rimer et al. 2009). Indeed, in analogy
to animal NOS (EC 1.14.13.39), plants appear to
have an enzyme, which is completely independent
of nitrite and whose function consists in deamina-
tion of L-arginine into L-citrulline and NO using
NADPH and O, and requiring Ca?*/calmodulin:

L-arginine + NAD(P)H + O, » vL-citrulline + NAD(P)* +
+ H,0 + NO

NOS activity was measured in pea by ozone
chemiluminiscence, using commercial neuronal
NOS as a positive control (Corpas et al. 2006).
This activity was also detected using electron
paramagnetic resonance spin-trapping technique
in soybean chloroplasts (Simontacchi et al. 2004)
and in sorghum seed embryonic axes (Jasid et al.
2006). In addition, immunological evidence for
NOS occurrence in pea and maize tissues was
obtained with antibodies against animal NOS
(Barroso et al. 1999, Ribiero et al. 1999).
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However, Lo et al. (2000) demonstrated that
these antibodies are rather unspecific. Likewise,
the response of NOS activity in barley root mito-
chondria to inhibitors, substrates and cofactors was
atypical when compared to iNOS, hence the exist-
ence of NOS root mitochondria was implausible
(Gupta and Kaiser 2010). Another point, calling
the existence of NOS in plants into question, is
the necessity of tetrahydrobiopterin in mamma-
lian NOS. This molecule seems to promote and/
or stabilize the active dimeric form of the enzyme
(Alderton et al. 2001). The presence of tetrahy-
drobiopterin in cells of higher plants is unclear.
Nevertheless, its function could be carried out
by tetrahydrofolate, whose metabolism was de-
scribed sufficiently in higher plants (Sahr et al.
2005, Corpas et al. 2009). In addition, no gene or
protein with sequence similar to the large animal
NOS proteins was found even in the sequenced
Arabidopsis genome (Crawford and Guo 2005).

Nevertheless, Arabidopsis has a gene with 16%
sequence similarity to the gene from snail Helix
pomatia which is implicated in NO synthesis
and which, when expressed in Escherichia coli,
increases NO synthesis in crude cytosolic frac-
tions from particular snail organs (Huang et al.
1997). This Arabidopsis gene was identified as a
member of GTP-binding family, encoding NOS-
like protein AtNOSI (Guo et al. 2003). AtNOS1
protein cross-reacts with antibodies against nNOS
(Guo et al. 2003). As AtNOSI might indirectly
affect NO synthesis, because it might serve as
GTPase, Crawford et al. (2006) suggested that
AtNOS1 should be rename nitric oxide associated
1 (AtNOA1I). However, the relationship between
AtNOAI function and NO accumulation is rather
unclear (Moreau et al. 2010).

So far, two locations for AENOA 1 were reported:
chloroplasts (Flores-Pérez et al. 2008) and mito-
chondria (Guo and Crawford 2005). Apart from
its role in NO production, AtNOAI might act in
binding RNA/ribosomes (Sudhamsu et al. 2008).

In algae, namely in Ostreococcus tauri and O. lu-
cimarinus, two NOS sequences were found (Foresi
et al. 2010). In the case of O. tauri it was found
that the amino acid sequence of the NOS is 45%
similar to that of a human NOS. It is close to the
mammalian inducible NOS isoform because (a) its
folding was likely to be similar to that of human
inducible NOS and (b) this algae enzyme lacks the
autoregulatory control element indicating that it
is close to the mammalian inducible NOS isoform.



Plant Soil Environ.

Vol. 60, 2014, No. 3: 129134

On the other hand, Ostreococcus genome has been
completely sequenced (Derelle et al. 2006) and
it lacks the genes encoding for the enzymes that
synthetize tetrahydrobiopterin, suggesting that
Ostreococcus NOS may bind another cofactor for
catalytic activity (Correa-Aragunde et al. 2013).

However, it is still premature to declare that plant
NOS was found because this organism belongs to
a primitive class within the green plant lineage,
the Prasinophyceae (Chlorophyta), so we cannot
assume that higher plants have retained this gene
(Hancock 2012).

Xanthine oxidoreductase. In addition to O,
reduction, xanthine oxidase is also capable of
reducing organic nitrates as well as inorganic
nitrate and nitrite releasing NO (Godber et al.
2000). Xanthine oxidoreductase, the ubiquitous
molybdenum-containing enzyme, occurs in two
convertible forms: the superoxide-producing xan-
thine oxidase (form O, EC 1.1.3.22) and xanthine
dehydrogenase (form D, EC 1.1.1.204) (Palma et al.
2002). Xanthine oxidoreductase was found present
in pea leaf peroxisomes where the major form of
the enzyme is xanthine oxidase and only 30% is
present as xanthine dehydrogenase (Sandalio et
al. 1988, Corpas et al. 1997, del Rio et al. 2004).
Wang et al. (2010) suggested a probable role for
xanthine oxidoreductase in the production of
NO upon phosphate deficiency in cluster roots
of lupine (Lupinus albus).

Another enzymatic sources. Wimalasekera et
al. (2011) suggested that polyamine oxidases and
copper containing amine oxidases might directly
or indirectly contribute to NO synthesis. This is in
agreement with the studies of Tun et al. (2006), who
reported that polyamines spermine and spermidine
were able to trigger NO production in plants.

The production of NO and ATP via cytochrome
c oxidase and/or reductase and possibly by alterna-
tive oxidase was described at the inner membrane
of mitochondria isolated from the barley roots
(Stoimenova et al. 2007). NO production by this
mechanism occurs below 1% oxygen (Gupta and
Igamberdiev 2011, Mur et al. 2013a).

Nonenzymatic production

NO formation under acidic conditions. A non-
enzymatic mechanism for the synthesis of NO
from NO, under acidic conditions is described by
the following reaction schemes, where through a

series of reactions, two molecules of HNO2 inter-
act and give rise to NO and NOZ, and NO2 can be
converted to NO and oxygen (Stohr and Stremlau
2006, Moreau et al. 2010):

2NO; + 2 H* > 2 HNO, < NO + NO, + H,0 <
©2NO + % 0, + H,0

At acidic pH, an apoplastic non-enzymatic con-
version of nitrite to NO occurring in the presence
of reductants such as ascorbic acid was described
(Bethke et al. 2004). In addition, simultaneous expo-
sure of carotenoids to NO, and light resulted in the
release of NO into the gas phase (Cooney et al. 1994).

NO production from hydroxylamine and sali-
cylhydroxamate. Riimer et al. (2009) described
another form of oxidative NO formation: when
hydroxylamine was applied to tobacco cell cul-
ture which was deficient in NR, NO was emit-
ted. However, because the natural existence of
hydroxylamines in plants was not confirmed, the
physiological significance of this pathway remains
unclear (Gupta et al. 2011). Similarly salicylhy-
droxamate, an inhibitor of alternative oxidase, was
oxidised to NO (Riimer et al. 2009). The diagram
describing both oxidative and reductive pathway
of NO production is on Figure 1.

NO scavenging

To avoid cell damage caused by excess of NO, NO
production and scavenging must be in the poise. For
example, under hypoxic condition, there is a very
efficient NAD(P)H- and non-symbiotic hemoglobin-
dependent NO-scavenging system (Igamberdiev et
al. 2004). In this system, oxygenated ferrous (Fe?*)
hemoglobin converts NO to NO; and becomes
metamoglobin (Fe3*) form which is then reduced to
oxygenated ferrous (Fe?*) by metamoglobine reduc-
tase (Hill 2012). The other enzyme through which NO
content is reduced is S-nitrosoglutathione reductase
(GSNOR). S-nitrosoglutathione results from the reac-
tion between NO and reduced glutathione. GSNOR
can regulate the cellular level of GSNO content via
the NADH-dependent reduction of GSNO to glu-
tathione disulphide and ammonia (Liu et al. 2001).
This way, GSNOR represents a means through which
NO content may be regulated as was demonstrated
using GSNOR mutants (Feechan et al. 2005, Mur et
al. 2013a). Alternative oxidase was also reported to
modulate tobacco leaf mitochondria concentration
of NO via leaking electron flow from the electron
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Figure 1. Two pathways for NO production: oxidative, where NO results from the oxidation of polyamines,

salicylhydroxamate and arginine, and reductive pathway, where NO is produced by the reduction of nitrate
(NO;) or nitrite (NOZ_). NR - nitrate reductase; NiNOR - nitrite:NO reductase; NOS — nitric oxide synthase

transport chain to terminal electron acceptor oxygen
or nitrite in the cytochrome pathway (Cvetkovska
and Vanlerberghe 2012, Mur et al. 2013a).

In conclusions, the studies concerning NO pro-
duction seem to be a great promise for the future.
The next studies revealing NOS in plants will be
necessary. One of the methods for the clear evidence
of NOS occurrence in plants would be to measure
the incorporation of radiolabel from radiolabelled
L-arginine into L-citrulline as operational evidence
of the correct NO synthesizing pathway (Wilson
et al. 2008). As NOS is eagerly studied drug target
in animal cells (Joubert and Malan 2011), we can
expect the same afford in plant biology. Promising
approach seems to be also the gene manipulation.
For example, increased NO content in A. thaliana
by expressing rat nNOS improved plant salt and
drought tolerance (Shi et al. 2012).
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