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Plants can use various forms of nitrogen from 
soils, most importantly the inorganic ions am-
monium (NH4

+) and nitrate (NO3
−). Nevertheless, 

urea constitutes another nitrogen source widely 
used by plants. In fact to provide crops production 
urea is intensively used as a nitrogen fertilizer. 
Urea nitrogen enters the plant either directly, or in 
the form of ammonium or nitrate after urea deg-
radation (Byrnes and Freney 1995). Urease is the 
enzyme responsible of urea hydrolysis producing 
ammonium (Guettes et al. 2002). NH4

+-N is one of 
the major nutrients for plants, and a ubiquitous 
intermediate in plant metabolism (Von Wiren et 
al. 2000). Because NH4

+-N assimilation requires 
less energy than that of NO3

−-N, it is usually ex-
pected to be preferred by plants (Britto et al. 2001). 
However, the ammonium ion is notorious for its 
toxic effects on many, if not all, plant strains: only 
a few strains perform well when NH4

+ is the only, 
or predominant, nitrogen source (Kronzucker et 
al. 1997, Li et al. 2009). In reality, ammonium is 

markedly present in agricultural soils as a result 
of fertilizers use, nitrogen cycle, or pollution. 
This additional NH4

+-N input affected species 
composition: even local species extinction, and 
large-scale forest decline was attributed directly to 
the ammonium (Dai et al. 2008). Numerous studies 
demonstrated that different N forms significantly 
influenced plant growth, but contrasting results 
were observed depending on the plant species used. 
Some plants such as maize, wheat, tobacco, bean, 
preferred nitrate to ammonium nutrition (Walch 
et al. 2000, Guo et al. 2002). These plants would 
suffer ammonium toxicity when supplied with 
high ammonium in the root medium as the sole N 
source. Having a higher ammonium assimilation 
capacity than other plant species, those plants 
could avoid ammonium toxicity and exhibited a 
preference for ammonium nutrition (Britto et al. 
2004, Guo et al. 2007). Although the toxicity of 
ammonium regardless its origin, has been observed 
for more than one hundred years (Britto et al. 
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2001), most reports concentrated on the study of 
animal (Alonso and Camargo 2003, Arauzo 2003), 
bacterium (Muller et al. 2006), and higher plants 
(Gerendás 1997, Britto and Kronzucker 2002).

In the present study, it was suggested that am-
monium directly added in nutrient solution or 
indirectly produced by hydrolysis of urea affected 
growth of plants through photosynthesis inhibition. 
When ammonium was added simultaneously with 
nitrate, deleterious effects on growth were reduced 
and photosynthesis activity was maintained.

MATERIAL AND METHODS

Plant material and growth conditions. Seeds 
of tomato (Solanum lycopersicon) were germi-
nated in Petri dishes at 25°C in darkness. Uniform 
seedlings were transferred to continually aerate 
nutrient solution containing low concentration 
of KNO3 (0.1 mmol). Ten days later, the seedlings 
were supplied with nutrient solutions contain-
ing KNO3 (5 mmol), mixture of KNO3 (3 mmol) 
and (NH4)2SO4 (2 mmol), (NH4)2SO4 (5 mmol) 
or urea (5 mmol). After 14 days of treatment, 
24-day-old plants were ready for the measurement 
of different parameters converted by this study.

D etermination of  chlorophyll  content . 
Chlorophyll a, b and total contents were deter-
mined as described by Arnon (1956).

Measurements of gas exchange and chlorophyll 
fluorescence. Measurements of net assimilation 
rate (Amax), transpiration rate (E) and stomatal 
conductance (GW) were made with a CIRAS-1 
gas exchange system (PP Systems, Hitchin, UK). 
Chlorophyll fluorescence emission from the upper 
surface of the leaves of intact plants was measured 
by modulated fluorimeter (MINI-PAM) photosyn-
thesis yield analyser (Walz, Effeltrich, Germany). 
Leaves previously selected for measurement of 
stomatal conductance were used for fluorescence 
measurements. The minimal (F0) and maximal 
chl a fluorescence (Fm) emissions were assessed 
in leaves after 30 min of dark adaptation and the 
maximum quantum efficiency of PS II photochem-
istry was calculated as Fv/Fm = (Fm – F0)/Fm. The 
parameters were estimated following Baker and 
Rosenquist (2004). Non-photochemical quench�-
ing of fluorescence (NPQ), which is proportional 
to the rate constant of thermal energy dissipation 
was calculated following Bjorkman and Demmig 
(1987). The photochemical quenching (qp) was 

calculated following Van Kooten and Snel (1990). 
The intrinsic efficiency of open PS II (Фexc) (or 
efficiency of excitation energy capture by open 
PS II reaction centres) was calculated following 
Harbinson et al. (1990).

Statistical analysis. All values reported are the 
means of six replicates per treatment (± SE), each 
experiment being conducted in duplicate. Data 
were processed by the variance analysis (ANOVA) 
and significance levels were accepted at P ≤ 0.05 
at all tests.

RESULTS AND DISCUSSION

Many plant species show growth depression 
when ammonium was supplied as a sole nitrogen 
form Claussen and Lenz (1999). Pure ammonium 
nutrition has a negative effect on different growth 
parameters such as leaf area, chlorophyll content 
and fresh matter yield (Figure 1) (Errebhi and 
Wilcox 1990, Raab and Terry 1994). It was sug-
gested that the toxicity of NH4

+-N was correlated 
with low pH value of growth medium resulting 
from the stoichiometry of excess H+ production 
Raven (1986). Acidification of the rhizosphere 
due to assimilation of NH4 restricted cation up-
take compared with plants receiving mixture of 
nitrate and ammonium (Basra and Goyal 2002). 
In fact, presence of NO3

−-N played also an im-
portant role as osmoticum besides its essential 
function in counter-ion for cation translocation 
in the xylem. Thus, there are reports indicating 
that NH4

+-grown wheat contains lower Ca2+, Mg2+ 
and K+ concentrations than plants supplied with 
NO3

− (Marschner 1995). In our previous study, 
we demonstrated that Arabidopsis growth was 
negatively affected by ammonium when added at 
excess or deficient doses. In contrast, the supply 
of average quantity of ammonium enhanced the 
growth of plants (Nasraoui et al. 2013). Compared 
to seedlings-fed with NO3

−-N as sole form of N, a 
lower CO2 assimilation rate, stomatal conductance 
and transpiration rate were found for ammonium or 
urea-supplied tomato plants. Moreover, the reduc-
tion degree of these parameters, was alleviated by 
addition of both nitrate and ammonium (Figure 2). 
Such results may indicate tomato tolerance capac-
ity to low ammonium supply parallel with high 
proportion of NO3

−-N (Claussen and Lenz 1999). 
These results suggested that some of the adverse 
effects of ammonium nutrition on plant growth 
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were related to photosynthesis. In contrast to 
nitrate supply, the use of ammonium directly fur-
nished or produced by hydrolysis of urea caused 
a reduction of leaf expansion (Marschner 1995), 
leading to a higher ribulose-1,5-bisphosphate car-
boxylase/oxygenase (Rubisco) amount and activity, 
chlorophyll content and density (Guo et al. 2000, 
2007). To explain how nitrogen form influences 
photosynthesis, photo-energy consumption and 
reductant supply were observed. The differences 
in photo-energy consumption and reductant sup-
ply between nitrate and ammonium-grown plants 
were discussed previously (Gerendás et al. 1997). 

It is generally accepted that the discrepancies ob-
served were related to the different assimilatory 
pathways of nitrate (in shoots) and ammonium 
(in roots). Briefly, the total cost in each N form 
absorption, transport, reduction, and assimila-
tion varied largely (Raven 1985). Compared to 
photosynthetic CO2 assimilation, the N assimila-
tion into glutamate is a very important sink for 
redox equivalents from the photosynthetic elec-
tron flow (Champigny and Foyer 1992). Generally, 
ammonium is toxic to plants and its toxic effect 
was reduced by assimilating the ammonium into 
organic compounds in the roots via the glutamine 
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Figure 1. Changes in fresh weight (a), Chl a,b and total contents 
(b) and leaf area (c) of tomato seedlings grown in nitrogen solu-
tions containing either nitrate, mixture of nitrate and ammonium, 
ammonium or urea. Data are means ± confidence limits (n = 6)
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synthetase/glutamate synthetase (GS/GOGAT) 
(Nasraoui et al. 2010). The suppression of CO2 
assimilation rate could be due to the competition 
for carbon skeletons and photogenerated reduct-
ant between the photosynthetic CO2 fixation and 
NH4

+-N assimilation (Elrifi et al. 1988). It was 
suggested that NH4

+-N assimilation had a much 
higher requirement ratio for ATP/NADPH than 
for CO2 and NO3

− assimilation (Turpin and Bruce 
1990). The thylakoid bound NAD(P)H dependent 
PQ reductase activity-NAD(P)H dehydrogenase 
mediate cyclic electron transport around PS I (Mi 
et al. 2001).

It seems that the main factor limiting net pho-
tosynthesis (expressed as Amax) by NH4

+-N was 
stomatal closure, which occurred when high am-
monium concentration or urea nitrogen were 
added in culture medium. The large diminution 
in Gw suggested that stomatal closure was one of 
the most important factors contributing to depress 
photosynthetic assimilation rate. These results in 
tomato agreed with those of Lawlor and Cornic 
(2002), who showed that stomatal closure was the 
main factor in the reduction in leaf photosynthesis 
during abiotic stress. The other reason that may be 
involved to explain why NH4

+-N or urea should in-
duce lower GW was the poorer osmotic adjustment. 
Moreover, a lower content of different cations and 
especially K+ may affect stomatal function (Laporte 
et al. 2002). Alternatively, earlier root senescence 

caused by NH4
+-N may be the cause of the lower 

GW in these plants (Britto and Kronzucker 2001, 
Basra and Goyal 2002). Declines in the different 
gas exchanges due to NH4

+-N source were accom-
panied by significant differences observed for the 
chlorophyll fluorescence parameters studied in 
this work (Fv/Fm, qp and NPQ). 

In these data, study of chlorophyll fluorescence 
parameters indicated that the efficiency of the pho-
tochemistry of PS I1 was affected by ammonium 
stress. In fact, ammonium was supplemented in 
nutrient solution alone but at high dose, simultane-
ously with nitrate or produced by hydrolysis urea 
cycle. Indeed, the Fv/Fm ratio determined on the 
fully expanded leaves was inhibited in tomato plants 
that received NH4

+-N alone or urea as nitrogen 
source. Thus the changes observed in Fv/Fm ratio 
values help us to explain the decrease in photo-
chemical quenching coefficient qp (Figures 3a,b). 
This decline in qp indicated that the primary elec-
tron acceptor of PS II, QA, was less oxidized. 
This suggested that in stressed plants the pho-
tochemical conversion and the capacity of the 
electron transport for the reduction of NADP 
were affected. On the other hand, the quantum 
yield of photochemical efficiency of PS I1 was af-
fected, thus indicating that ammonium interfere 
with the light reactions of photosynthesis. The 
rise of non-photochemical quenching coefficient 
indicated that a higher proportion of absorbed 

Figure 3. Changes in Fv/Fm ratio (a), photochemical 
quenching (qp) (b) and non photochemical quench-
ing (NPQ) (c) in leaves of tomato seedlings grown in 
nitrogen solutions containing either nitrate, mixture 
of nitrate and ammonium, amonium or urea. Data are 
means ± confidence limits (n = 6)
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photons was lost as heat instead of being used to 
drive photosynthesis) (Figure 3c).

We can conclude that regardless ammonium origin 
(nitrogen source or liberated by different metabolic 
cycles as urea hydrolysis), high NH4

+-N level present 
in plant tissues affected plants growth. This negative 
effect was generated as a consequence of photosyn-
thesis process perturbation and depended mainly on 
the content of photosynthetic pigments. Anomaly 
of light energy dissipation as fluorescence was not 
only indicative of lower chlorophyll content, but 
also photochemical energy conversion decrease. The 
enhancement of photosynthesis process and decline 
of chl fluorescence intensity together with pigment 
accumulation in mixture fed- tomato, revealed that 
partial substitution of NH4

+-N by NO3
−-N was ben-

eficial to the growth of this plant. However, addition 
of high NH4

+-N dose alone or urea can easily and 
significantly damage growth plants. 
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