The influence of fertilization and crop rotation on the winter wheat production

M. Babulicová

National Agricultural and Food Centre Lužianky – Research Institute of Plant Production Piešťany, Piešťany, Slovak Republic

ABSTRACT

In a long-term field experiment winter wheat was grown in crop rotations with 40, 60 and 80% proportion of cereals. Two levels of fertilization were used: H_1 – mineral fertilization N, P, K + organic fertilization Veget®; H_2 – only mineral fertilization N, P, K. Winter what was grown after two preceding crops: pea and winter barley. In 2010–2012 the grain yield of winter wheat after pea was statistically higher at fertilization with mineral fertilizers N, P, K and organic manure Veget® (7.15 t/ha) in comparison with mineral fertilizers only (6.65 t/ha). In crop rotation with 80% of cereals the grain yield of winter wheat after pea as a preceding crop was statistically higher (6.81 t/ha) than after winter barley (5.59 t/ha). The rising of grain yield at 1.9 t/ha was achieved by suitable preceding crop (pea) and by combined fertilization (mineral fertilizers N, P, K + organic manure Veget®). The grain yield of winter wheat 5.24 t was obtained by mineral fertilization N, P, K only and after winter barley. By mineral fertilization N, P, K + organic manure Veget®) and after pea as a preceding crop the grain yield of winter wheat 7.14 t/ha was reached.

Keywords: crop rotation; Triticum aestivum; proportion of cereals; grain yield; bulk weight

In agricultural production the crop rotations are always one of the principal agrotechnical measures which contribute to increased crop production. From foreign and national literature it follows that farms use high proportion of cereals and the proportion of root crops decreases. In crop rotations they use the cereals after cereals, in better case after oil crops. By a higher proportion of cereals the decrease of grain yield is expected. In general, the reasons of grain yield decrease lie in the damage caused by fungal diseases, stronger weed infestation rate, the degradation of soil structure and in negative impacts on the water and air regime. Other reasons include the worse balance of humus in the soil and the nutrient-supply. According to Khosro et al. (2011) cropping systems in Iran farmland areas are characterized by continuous cultivation of crops with consumption of chemical fertilizer leading to serious soil erosion and fertility decline. The disrupted balance of agro-ecosystem can be compensated by rotation of crops with various requests on the nutrients. We can keep the stability of agrosystem by using adequate input of organic

and mineral fertilisers as well as by using the suitable applications of pesticides. The efficiency of nitrogen fertilization is evaluated most often with respect to the amount of qualitative changes in grain yield. However, a thorough evaluation of the results of fertilization requires a wider approach (Kolodziejczyk et al. 2013). Engström and Bergkvist (2009) in their the study quantified the effect of three N fertilization strategies on the number of tillers at growth stage (GS) 30-31 and the grain yield of winter wheat. They suggested the N application before growth stage 30 to avoid yield reductions. Kato and Yamagistri (2011) investigated the growth response of winter wheat to different fertilization regimes in long-term experiments. Varieties of winter wheat were grown crop rotation with maize with a high rate of organic manure, and standard or low rates of inorganic fertilizer for 3 years. In spite of significantly higher grain yield in crop rotation with high dose of organic manure, the dry matter partitioning during the grain-filling period resulted in an imbalance in the sink-source relationship in organic manure: the number of

Table 1. Weather conditions in 2010–2012 in the experimental station Borovce (belonging to National Agricultural and Food Centre Lužianky – Research Institute of Plant Production Piešťany) in comparison with long-term average

M d	Long-term ave	rage (1951–1980)	20	10	20	011	20	2012		
Month	$x_{\rm td}$	$\Sigma_{ m z}$	$x_{\rm td}$	Σ_{z}	$x_{\rm td}$	Σ_{z}	$x_{\rm td}$	Σ_{z}		
January	-1.8	32	-2.22	60.6	-1.87	32.4	-0.48	78.8		
February	0.2	33	1.39	38.0	-2.06	8.0	-4.59	39.2		
March	4.2	32	4.82	19.5	4.31	29.0	5.07	4.5		
April	9.4	43	9.91	65.0	11.60	30.4	9.07	20.3		
May	14.1	54	15.41	168.3	14.68	93.2	15.43	16.2		
June	17.7	80	19.47	95.0	19.15	165.2	18.88	108.1		
July	18.9	76	23.02	98.0	18.14	83.2	20.73	94.1		
August	18.4	68	19.65	99.5	20.48	25.4	20.12	10.6		
September	14.5	38	13.42	101.5	16.41	17.8	14.76	41.5		
October	9.6	42	8.04	25.0	7.77	32.9	8.02	88.5		
November	4.6	51	7.36	76.0	1.37	2.0	4.88	22.6		
December	0.3	46	-2.23	48.8	0.03	42.4	-2.81	46.5		
$x_{\rm td}$	9.2		9.84		9.17		9.09			
$\Sigma_{\rm z}$		595		895.2		561.9		570.9		

 $x_{\rm td}$ – average air temperature (°C); $\Sigma_{\rm z}$ – sum of precipitation (mm)

grains was too large for the assimilation rate. The growth pattern of wheat under intensive manure application should be modified to favour biomass production during the post-anthesis stages.

MATERIAL AND METHODS

The presented results are part of a long-term field experiment established in 1974 in the maizebarley producing area at the Experimental Station Borovce, belonging to the National Agricultural and Food Centre Lužianky - Research Institute of Plant Production Piešťany, Slovak Republic. The experimental fields at Borovce are located at elevation of 167 m a.s.l. The region is characterized by continental climate with average annual rainfall of 593 mm (from it 358 mm during the vegetation period), and long-term average annual temperature of 9.2°C (15.5°C during the vegetation season). The weather conditions in Borovce are presented in Table 1. The soil characteristics of field plots were as follows: Luvi-Haplic Chernozem. The depth of plow layer was 24-28 cm. The soil was characterized by low content of phosphorus, good content of potassium, high content of magnesium (the analysis according to Mehlich II). Conventional ploughing to depth 22-25 cm, sowing, fertilization and plant treatments were performed according to the recommendations for the given area. The pesticide treatments were realized according to the actual occurrence of diseases, pests and weeds. The long-term field experiment in Borovce consists of three crop rotations with 40, 60 and 80% proportion of cereals (Table 2). In crop rotations two different fertilization treatments of winter wheat were used: H₁ - mineral fertilization + organic fertilizer (Veget®); H₂ - mineral fertilizer amendment. The mineral fertilization consisted of N, P and K, application at P and K dosages calculated according to the balance methodology (Bizík et al. 1998), and by the methodology of Ložek (1998). Veget® was applied at a dose of 5 t/ha/year. The composition of organic fertilizer Veget® is as follows: dry matter content min. 85% (includes

Table 2. Crop rotations with 40, 60 and 80% proportion of cereals

	Proportion of cereals (%)							
	40	60	80					
1	peas	peas	winter wheat					
2	winter wheat	winter wheat	spring barley					
3	maize on silage	winter barley	peas					
4	spring barley	maize on silage	winter wheat					
5	grain maize	spring barley	winter barley					

Table 3. Doses of nutrients (kg/ha): nitrogen (N), phosphorus (P) and potassium (K) by fertilization levels in
crop rotations with 40, 60 and 80% proportion of cereals

Proportion of cereals	Preceding _	2009/2010			2010/2011			2011/2013		
	crop	N	P	K	N	P	K	N	P	K
40 H ₁	peas	_	_	27	_	_	27	_	_	27
$40~\mathrm{H_2}$	peas	120	30	100	120	_	100	120	_	100
$60~\mathrm{H}_1$	peas	_	_	27	_	_	27	_	_	_
$60~\mathrm{H}_2$	peas	135	30	100	135	30	100	135	_	_
$80 \; \mathrm{H_{1}}$	peas	_	_	27	_	_	47	_	_	27
$80 \; \mathrm{H_2}$	peas	135	30	100	135	30	120	135	25	100
$80 \; H_1$	winter barley	_	_	27	_	_	47	_	_	27
$80~\mathrm{H}_2$	winter barley	135	30	100	135	30	120	135	25	100

H₁ – mineral fertilization N, P, K + organic fertilization Veget®; H₂ – only mineral fertilization N, P, K

combustible matter content 75%); total N content 2.5-3.0%; total P_2O_5 content 0.5-2.0%, and K_2O content 1.5%, ratio C:N 13:1, and pH (in water) 8.5. Doses of N applied to winter wheat were divided: (a) basic fertilization – in autumn before sowing; (b) regenerative additional fertilising – very soon in spring; (c) productive additional fertilising was realised in growth stage of crop BBCH 32. In the experimental years 2010-2012 the winter wheat cv. Petrana was included in crop rotations.

In this work, we evaluated the number of ears per square meter, the bulk weight, the one-thousand grain weight, the grain over sieve 2.5 mm and the grain yield of winter wheat.

The statistical significance of the data was computed by multiple-way analysis of variance (ANOVA). In addition, the *LSD* multiple range test was used to determine which means differed significantly from the others, using a significance level of 0.05%. These analyses were performed using Statistica 6.1. (StatSoft Inc., Tulsa, USA).

RESULTS AND DISCUSSION

The proportion of cereals and the climatic conditions of particular years had a statistically significant influence on the number of ears of winter wheat (Table 4). In crop rotation with 80% share of cereals after peas (Table 5) the number of ears pre one square meter (573 pieces/m²) was significantly lower than in crop rotation with 40% (606 pieces/m²) and 60% proportion of cereals (627 pieces/m²).

The climatic conditions of particular year, interaction between fertilization and years, and interaction between proportion of cereals and years

had a statistically significant influence on the bulk weight of winter wheat (Table 4). In crop rotation with 80% proportion of cereals after peas as a preceding crop (Tables 5 and 6) the bulk weight was statistically higher (817 g/L) than after winter barley (796 g/L). The proportion of cereals and the climatic conditions of particular year had a statistically significant influence on the weight of onethousand grains of winter wheat (Table 4). In crop rotation with 40% proportion of cereals (Table 5) the weight of one-thousand grains was significantly higher (41.9 g) than in crop rotation with 80% share of cereals after peas as a preceding crop (41.3 g). After preceding crop peas (Tables 5 and 6) the weight of one-thousand grains was statistically higher (41.3 g) than after winter barley (38.5 g). The climatic conditions of particular years had a statistically significant influence on the proportion of grains 2.8 + 2.5 mm of winter wheat (Table 4). After peas (Tables 5 and 6) the proportion of grains 2.8 + 2.5 was statistically higher (78.0%) than after winter barley (68.7%). In accordance with the results of Grzebisz (1988) the highest grain yield was recorded in crop rotation with 60% proportion of cereals (6.99 t/ha). Grzebisz indicated that the cultivation of winter wheat in rotation containing more than 50% cereals affected the drop of winter wheat grain yield, which was especially high on the plots without nitrogen fertilization or with low N level. The fertilization, climatic conditions of particular year, and the interaction between fertilization and years had a statistically significant influence on the grain yield of winter wheat (Table 4). When mineral fertilization and incorporation of organic fertilizer Veget® was applied (Table 6), we obtained a sig-

Table 4. The influence of fertilization and the proportion of cereals and preceding crop on yield formation elements and the grain yield of winter wheat (abbreviated analysis of variance)

	1	VE	F	BW	W	TG]	PG		n yield
Factor -	sign.	$LSD_{0.05}$								
Proportion of cereals										
Fertilization (A)		30.4		1.90		0.41		1.17	*	0.14
Proportion of cereals (B)	妆	44.8		2.81	牵	0.60		1.73		0.20
$A \times B$		77.8		4.87		1.05		3.01		0.35
Years (C)	*	44.8	非	2.80	赤	0.60	非	1.73	*	0.20
$A \times C$		77.8	非	4.87		1.05		3.01	*	0.35
$B \times C$		104.3	非	6.52		1.40		4.03		0.47
Preceding crop										
Fertilization		45.23		5.44		0.79		2.96	帮	0.27
Preceding crop		45.23	非	5.44	赤	0.79	非	2.96	*	0.27
$A \times B$		85.06		4.87		1.49		5.57		0.51
Years	*	66.82	非	8.03	赤	1.17	非	4.38	*	0.40
$A \times C$		116.49		14.00		2.05	非	7.63		0.70
$B \times C$		116.49	非	14.00	*	2.05	非	7.63	*	0.70

Sign. – signification (* $P \le 0.05$). NE – number of ears; BW – bulk weight; WTG – weight of one-thousand grains; PG – proportion of grains 2.8 + 2.5 mm

nificantly higher grain yield after peas (7.15 t/ha) than in comparison with the mineral fertilization (6.65 t/ha). These results are in accordance with the results of Koenig et al. (2011). Biosolids in dose 0 to 1400 kg/ha results in higher grain yields (0% to 47%) than inorganic N. The appropriate application rate of nitrogen on a high-yielding wheat

field was 96–168 kg N/ha. A little difference was noticed in doses of 150–200 kg N/ha. The excessive N application (above 240 kg N/ha) also obviously decreased the grain yield and N uptake efficiency. Dry matter and grain N content were influenced by the type and amount of fertilizer-N, too (Doltra et al. 2011, Wang et al. 2011, Mocanu et al. 2012).

Table 5. The yield produced elements of winter wheat in crop rotations (average in 2010-2012)

Proportion of cereals (%)	Fertilization	Preceding crop	NE (pieces/m²)	BW (g/L)	WTG (g)	PG (%)
40	H ₁	peas	583	817	41.8	77.5
40	H_2^-		629	816	42.1	78.7
Average			606	816	41.9	78.1
(0)	H ₁	peas	630	817	41.6	77.6
60	H_2		623	818	41.9	78.1
Average	_		627	818	41.7	77.8
0.0	H ₁	peas	577	817	41.1	77.2
80	H_2		569	817	41.4	78.8
Average	_		573	817	41.3	78.0
0.0	H ₁	winter	571	795	37.8	68.1
80	H_2	barley	576	797	39.1	69.3
Average	-		574	796	38.5	68.7
Total average			595	812	40.9	75.6

NE – number of ears; BW – bulk weight; WTG – weight of one-thousand grains; PG – proportion of grains 2.8 + 2.5 mm; H_1 – mineral fertilization N, P, K + organic fertilization Veget®; H_2 – only mineral fertilization N, P, K

Table 6. The grain yield (t/ha) of winter wheat in crop rotations

Proportion	E (II (Preceding		Grair	ı yield	
of cereals (%)	Fertilization	crop	2010	2011	2012	average
40	H ₁	peas	7.09	8.29	5.90	7.09
40	H_2		7.07	7.29	5.67	6.68
Average			7.08	7.79	5.79	6.89
60	H ₁	peas	7.30	8.28	6.09	7.22
60	H_2		7.19	7.25	5.86	6.77
Average	_		7.24	7.77	5.97	6.99
0.0	H ₁	peas	7.42	8.24	5.76	7.14
80	H_2		7.20	6.88	5.38	6.49
Average			7.31	7.56	5.57	6.81
0.0	H ₁	winter	5.64	6.93	5.24	5.93
80	H_2	barley	5.09	5.99	4.65	5.24
Average	_		5.36	6.46	4.94	5.59
Total average			6.75	7.39	5.57	6.57

 H_1 – mineral fertilization N, P, K + organic fertilization Veget®; H_2 – only mineral fertilization N, P, K

In 2011 after peas as a preceding crop the grain yield (Table 6) was significantly higher (7.71 t/ha) than in 2010 (7.21 t/ha) and 2012 (5.78 t/ha). The preceding crop had a statistically significant influence on the grain yield of winter wheat (Table 4). After peas the grain yield was statistically higher (6.81 t/ha) than after winter barley (5.59 t/ha). This agrees with the findings reported by Buraczynska et al. (2011). Grain yield, yield components, N content and N uptake in the grain of winter wheat following field pea and spring triticale/field pea mixtures were significantly higher compared with winter wheat following spring triticale. According to Montemurro (2009) crop rotation had a marked influence on the grain yield of winter wheat. Among the crop rotations, wheat after sugar beet had the highest grain yield (4.91 t/ha) and a good protein content (11.9%), while sunflower and tomato rotations had a lower grain yield (4.35 t/ha) and protein content (10.3%). Rahimizadeh et al. (2010) indicated that nitrogen use efficiency, nitrogen uptake efficiency, nitrogen utilization efficiency, nitrogen harvest index and grain protein content of wheat were significantly affected by preceding crop. In growing of winter wheat after potato the highest values of these characteristics were recorded. As shown in Table 2, the climatic conditions in years 2010–2012 were extreme in the rainfall distribution and the average daily temperature exceeded the long-term average value. This unfavourable process of climatic conditions resulted in the decrease of

the grain yield. To reduce negative environmental impacts and sustain the yield levels Tuomistro et al. (2012) recommended the combination of the best practices from organic and conventional systems. An increase of grain yield can be reached by enhancing of harvesting and root residues (Merbach and Schulz 2013).

The difference between grain yield in crop rotation with 60% share of cereals with mineral fertilization + Veget® after peas as a preceding crop and the grain yield in crop rotation with 80% share of cereals with mineral fertilization after winter barley as a preceding crop was 1.98 t/ha. The results expressly confirm that despite the stress factors (e.g. irregular rainfall division in a vegetation period, increase of average monthly temperatures of air) the grain yield higher than 7.0 t/ha can be reached by suitable agricultural measures.

REFERENCES

Bizík J., Fecenko J., Kotvas F., Ložek O. (1998): Methodology of the Fertilization and the Nutrition of Plants. Bratislava, 113.
Buraczyńska D., Ceglarek F., Gasiorowska B., Zaniewicz-Bajkowska A., Plaza A. (2011): Cultivation of wheat following pea and triticale/pea mixtures increases yields and nitrogen content. Acta Agriculturae Scandinavica, Section B – Soil and Plant Science, 61: 622–632.

Doltra J., Laegdsmand M., Olesen J.E. (2011): Cereal yield and quality as affected by nitrogen availability in organic and con-

- ventional arable crop rotations: A combined modelling and experimental approach. European Journal of Agronomy, 34: 83–95.
- Engström L., Bergkvist G. (2009): Effects of three N strategies on tillering and yield of low shoot density winter wheat. Acta Agriculturae Scandinavica, Section B Soil and Plant Science, 59: 536–543.
- Grzebisz W. (1988): The influence of crop rotation with an increasing content of cereals on photosynthetic potential of winter wheat. Journal of Agronomy and Crop Science, *160*: 198–207.
- Kato Y., Yamagishi J. (2011): Long-term effects of organic manure application on the productivity of winter wheat grown in a crop rotation with maize in Japan. Field Crops Research, 120: 387–395.
- Khosro M., Amir G., Majid A., Gholamreza H., Behzad S., Yousef S. (2011): Effect of different methods of crop rotation and fertilization on canola traits and soil microbial activity. Australian Journal of Crop Science, 5: 1261–1268.
- Koenig R.T., Cogger C.G., Bary A.I. (2011): Dryland winter wheat yield, grain protein, and soil nitrogen responses to fertilizer and biosolids applications. Applied and Environmental Soil Science, 2011, 1–9.
- Kolodziejczyk M., Kulig B., Oleksy A., Szmigiel A. (2013): The effectiveness of N-fertilization and microbial preparation on spring wheat. Plant, Soil and Environment, 59: 335–341.
- Ložek O. (1998): Optimalization of Winter Wheat Nutrition. SPU, Nitra.

- Merbach I., Schulz E. (2013): Long-term fertilization effects on crop yields, soil fertility and sustainability in the static fertilization experiment Bad Lauchstädt under climatic conditions 2001–2010. Archives of Agronomy and Soil Science, 59: 1041–1057.
- Mocanu R., Rosca D., Dodocioiu A.M., Susinski M. (2012): The effect of several fertilizer rates on winter wheat yield at ARDS Caracal. Research Journal of Agricultural Science, 44: 79–85.
- Montemurro F. (2009): Different nitrogen fertilization sources, soil tillage, and crop rotations in winter wheat: Effect on yield, quality, and nitrogen utilization. Journal of Plant Nutrition, *32*: 1–18. doi: 10.1080/01904160802530979.
- Rahimizadeh M., Kashani A., Zare-Feizabadi A., Koocheki A.R., Nassiri-Mahallati M. (2010): Nitrogen use efficiency of wheat as affected by preceding crop, application rate of nitrogen and crop residues. Australian Journal of Crop Science, 4: 363–368.
- Tuomisto H.L., Hodge I.D., Riordan P., Macdonald D.W. (2012): Comparing global warming potential, energy use and land use of organic, conventional and integrated winter wheat production. Annals of Applied Biology, 161: 116–126.
- Wang D., Xu Z., Zhao J., Wang Y., Yu Z. (2011): Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat-soil system. Acta Agriculturae Scandinavica, Section B – Soil and Plant Science, 61: 681–692.

Received on January 3, 2014 Accepted on May 21, 2014

Corresponding author:

Ing. Mgr. Mária Babulicová, Ph.D., Národné poľnohospodárske a potravinárske centrum Lužianky – Výskumný ústav rastlinnej výroby Piešťany, Bratislavská cesta 122, 921 01 Piešťany, Slovenská republika e-mail: babulicova@vurv.sk