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ABSTRACT

Many factors can influence crop yield. One of the most important factors is topography, which can play a crucial
role especially in dry years. Plant variability can be monitored by many methods. This paper evaluates the suitabil-
ity of vegetation indices derived from satellite Landsat 5 TM data in comparison with yield, curvature and topogra-
phy wetness index over a relatively small field (11.5 ha). Imageries were chosen from the years 2006 and 2010, when
oat was grown and from 2005 and 2011, when winter wheat was grown. These images were taken in June in the
same growth stage for every crop. It was confirmed that derived indices from Landsat images can be used for com-
parison with yield and selected topographic attributes and it can explain yield variability, which can be influenced
by water distribution during growth stages. Correlation coefficient between moisture stress index and winter wheat
yield was —0.816 in the image acquisition date of 4. 6. 2011.
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It is generally known that topography plays an
important role in the control of plant growth and
that water is the most frequent limiting factor in
agriculture (Schmidt and Persson 2003). Yield vari-
ability is caused by many factors such as the plant
and soil factors, weather (temperature and precipi-
tation distribution) and topography. Consequently,
the yield maps tend to vary from year to year.

The following topography attributes are used
most widely for explaining topography influence on
yield: digital elevation models (DEM) (Igbal et al.
2005, Murphy et al. 2009), relative field elevation
(Serrano et al. 2013), slope (Pilesjo et al. 2005),
curvature (Guo et al. 2012), flow accumulation

(Marques da Silva and Silva 2008, Kumhalova et al.
2013), topography wetness index (TWI) (Schmidt
and Persson 2003, Serensen et al. 2006), distance
to flow lines (Marques da Silva and Silva 2006) and
compound topographic index (Momm et al. 2013).

Yield variability and topographic impact on yield
can be monitored by many methods. Quite wide-
spread ways of yield and topography monitoring
are ground-based sampling; tractor mounted sam-
pling, remote sensing from helicopter and aircraft,
or satellite remote sensing (Jones and Vaughan
2010). Satellite remote sensing systems not only
cover large surface areas on the Earth, but also
view the same target area repeatedly. Traditional
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satellite systems such as Landsat and SPOT have
been widely used for agricultural purposes over
large geographic areas, but this type of image has
limited use in precision agriculture because of its
coarse spatial resolution (Zhang and Pierce 2013).
Spatial resolution of Landsat TM image is 30 m.
Nevertheless, Landsat images are often used for
explaining plant and soil variability in agricultural
plots because of the possibility to use several spectral
bands. Guo et al. (2012) evaluated spatial variability
of cotton yield in a 50-ha field in relation to soil ap-
parent electrical conductivity, topography, and bare
soil brightness obtained from remote sensing image
(Landsat 5 TM) over multiple growing seasons. Julien
etal. (2011) tested a method of distinguishing plant
species in agricultural area in Spain on the basis
of multitemporal data from Landsat 5 TM image
using the Yearly Land Cover Dynamics method.
Doraiswamy et al. (2004) evaluated the integration
of MODIS-250 m resolution in a crop yield simula-
tion model under soil moisture conditions varying
in space and time in a predominantly maize and
soybean crop area (100 x 50 km). This study con-
tinued in earlier investigations by Doraiswamy et al.
(2001) on maize and soybean. Their investigations
were successful with a combination of Landsat TM
and MODIS data.

Multispectral Landsat image allows us to de-
rive many indices that can be used for explaining
plant variability at different growth stages and
subsequently for explaining yield variability or
for yield estimation. The most widely used indices
mentioned in the literature are the normalised
difference vegetation index (NDVI) (e.g. Julien
et al. 2011), green NDVI (GNDVI) (e.g. Nigon
et al. 2014) and moisture stress index (MSI) (e.g.
Dupigny-Giroux and Lewis 1999).

According to the literature, the Landsat image
and its derivate indices were often used in large

plots. Therefore the main aim of this study is to
evaluate the potential of the vegetation indices
NDVI, GNDVI and MSI derived from Landsat 5 TM
data, and the topography attributes (curvature
and TWI) for crop yield prediction on an 11.5 ha
field as a relatively small plot suitable for precision
agriculture purposes.

MATERIAL AND METHODS

The experimental data for this study were ob-
tained from an experimental field of 11.5 ha in
Prague-Ruzyné (50°05'N, 14°17'30"E), Czech
Republic, with a Haplic Luvisol soil. Conventional
arable soil tillage technology and fixed crop rota-
tion was used on this field. Yield was measured by a
combine harvester equipped with the yield monitor
LH 500 (LH Agro, Aabybro, Denmark). Detailed
description of the yield measuring device can be
found in Kumhélova et al. (2011). Experimental
variograms of yield were computed by common
procedures using an exponential model.

Total monthly precipitation and temperature data
were provided by the Agro meteorology station
at the Crop Research Institute in Prague-Ruzyné.
Precipitation and temperature for observed years
are also stated in Table 1.

The topographic data were obtained by using
LiDAR data kindly provided by the Czech office for
surveying, mapping and cadastre. Elevation data
were interpolated by inverse distance weighting
(IDW) in (ArcGIS 10.1) to create the DEM. The
slope model (SM) and flow accumulation model
(FAM) were then derived from the DEM — D8
algorithm, profile curvature (PR) and planar cur-
vature (PL). TWI uses SM and FAM raster data as
inputs, based on the idea that low-gradient areas
will gather water (high TWI values), whereas steep

Table 1. Precipitations and temperatures at different growth stages by BBCH scale recorded in the experimental
field for oat in 2006 and 2010, and for winter wheat in 2005 and 2011

Precipitation (mm)

Temperature (°C)

oat winter wheat oat winter wheat
2006 2010 2005 2011 2006 2010 2005 2011
BBCH 20-29 111.4 93.4 83.4 104.4 14.1 12.3 4.0 3.4
BBCH 30-59 48.6 84.7 90.4 39.5 16.6 16.5 13.9 14.8
After BBCH 60 94.6 142.3 207.8 257.4 22.2 21.1 18.4 17.9
Sum 254.6 320.4 381.6 401.3 - - - -
Mean 84.9 106.8 127.2 133.8 17.6 16.6 12.1 12.0
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Table 2. Summary statistics of yields and methods of
interpolation used for estimation of crop yields (t/ha)
in selected years: 2006 and 2010 — oat, 2005 and 2011
— winter wheat

Oat Winter wheat
2006 2010 2005 2011

Count 8822 9024 8236 7548
Mean 4.219 2.254 6.081 7.053
Median 4.287 2.354 6.318 7.218
Standard deviation 0.953 0.852 1.143 1.953
Minimum 0.989 0.101 2.075 0.589
Maximum 7.224  4.825 9.929 13.458
Skewness -0.515 -0.359 -0.806 —0.141
Method of interpolation Kriging

Method of estimation method of moments

Variogram model exponential

Distance parameter (r) 234  26.0 32.5 45.3
f;‘;ge Ofg‘itf 702 780  97.5 135.9
Nugget variance 0.211 0.290 0.215 1.38
Sill variance 0.655 0.700 1.285 3.26

convex areas will shed water (low TWI values).
TWI values are non-dimensional relative indices
and vary by landscape type and DEM. All topog-
raphy models were created in ArcGIS 10.1 SW.
Landsat 5 TM satellite images have been provided
by USGS (http://glovis.usgs.gov). The following im-
age data sets were available for estimation of growth
observed at the same growth stage: for oat on 13
June 2006 and 17 June 2010, and for winter wheat on
3 June 2005 and 4 June 2011. After atmospheric cor-
rection of each satellite scene, the following indices
were calculated: NDVI (Rouse et al. 1974), GNDVI
(Gitelson et al. 1996) and MSI (Rock et al. 1985).

Pearson correlations between the yield maps,
TWI, PR and PL models and indices derived from
satellite imagery were assessed using the Statistica
8.0 (StatSoft Inc., Tulsa, USA) procedure at the
a = 0.05 significance level. For more details see
Kumhadlova et al. (2011).

RESULTS AND DISCUSSION

Summary statistics of crop yield and G/NDVI
(NDVI, GNDVI) and MSI are given in Tables 2
and 3. Correlation matrices between yield and
the TWI, PR and PL indices were calculated for
individual image data and plant species. Results
of the correlation analysis are given in Table 4.

Oat and winter wheat yield had weak and nega-
tive correlation with PL and positive correlation
with PR. The same results were obtained for the
comparison between PL/PR and G/NDVI and
inversely with MSI. Guo et al. (2012) obtained
similar results for the comparison of PL/PR with
cotton yield and four bands in a Landsat 5 TM im-
age. The types of curvature (Figure 2) indicate the
directions of soil water and nutrient movement.
Convex curvature is associated with soil erosion
and concave curvature is with deposition (Guo
et al. 2012). Theoretically, a concave area should
provide more available water and nutrients sup-
porting plant growth. In this study with oat and
winter wheat and in another study by Guo et al.
(2012) with cotton, yield was positively correlated
with PR, which means that yield was higher at the
convex curvature locations. Kaspar et al. (2003)
stated that maize yield was negatively correlated
with both curvatures, especially in dry seasons. On
the other hand, Ebeid et al. (1995) reported that

Table 3. Summary statistics of vegetation indices normalised difference vegetation index (NDVI); green NDVI

(GNDVI) and moisture stress index (MSI) calculated from satellite Landsat 5 TM data acquired on respective dates

Oat Winter wheat
13. 6. 2006 17.6.2010 3. 6.2005 4.6.2011

NDVI GNDVI MSI NDVI GNDVI MSI NDVI GNDVI MSI  NDVI GNDVI MSI
Count 127 127 127 127 127 127 127 127 127 127 127 127
Mean 0.857 0.811 0.365 0.889 0.828 0.267 0.846 0.796 0.177 0.832 0.851 0.128
Median 0.889 0.839 0.338 0916 0.849 0.246 0.871 0.814 0.159 0.835 0.848 0.117
Standard deviation 0.082 0.068 0.079 0.075 0.067 0.069 0.066 0.056 0.051 0.117 0.102 0.055
Minimum 0.413 0.455 0.309 0.584 0.555 0.204 0.553 0.561 0.108 0.499 0.539 0.048
Maximum 0.920 0.861 0.804 0.948 0.881 0.574 0.925 0.865 0.437 1.032 1.010 0.320
Skewness -3.109 -3.016 3.243 -2.836 -2.765 3.181 -2.233 -2.085 2.228 -0.533 -0.442 1.179
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Table 4. Correlation coefficients between the vegetation indices normalised difference vegetation index (NDVI);
green NDVI (GNDVI); moisture stress index (MSI), selected topographic attributes and oat/winter wheat yields
for the years 2005, 2006, 2010 and 2011. All coefficients are significant at o < 0.05

Oat Winter wheat
13. 6. 2006 17.6.2010 3. 6.2005 4.6.2011
NDVI GNDVI MSI NDVI GNDVI MSI NDVI GNDVI MSI NDVI GNDVI MSI

Yield 0.712 0.717 -0.680 0.638 0.659 -0.599 0.600 0.656 -0.651 0.764 0.752 -0.816
TWI 0.449 0.445 -0.454 0.477 0.464 -0.495 0.389 0.357 -0.419 0.387 0.366 -0.461
PL -0.151 -0.183 0.148 -0.231 -0.234 0.228 -0.099 -0.111 0.117 -0.257 -0.246 0.269
PR 0.373 0.378 -0.383 0.427 0.418 -0.463 0.226 0.188 -0.254 0.309 0.318 -0.325
Yield 2006 2010 2005 2011
TWI 0.532 0.519 0.218 0.587
PL -0.267 —0.008 —0.044 -0.251
PR 0.382 0.206 0.119 0.367

TWI — topographic wetness index; PL — planar curvature; PR — profile curvature

higher maize yield occurred at higher landscape
positions, thanks to additional water stored in the
clay forming the top layer of eroded soil.

Oat was grown during 2006 and 2010. There is
no significant difference in correlation coefficients
between the G/NDVI/MSI of individual images,
yield and TWI. Correlations between MSI and
all observed attributes were negative (minus) in

High: 0.367765
Low: —0.206823

)

0 50 100

High: 3.903
Low: 0.349179

———————

all years, because MSI describes the water spec-
tral reflectance in growing plants (Figure 1). The
year 2006 seemed to be optimal for oat growth.
Oat benefited from sufficient water availability
in the whole field, especially at the main growth
stages. This statement was confirmed by the re-
sults of summary statistics in Table 2 and by the
correlation coefficients in Table 4. Oat yield was

High: 0.257576
Low: —0.493562

High
Low

Note: non-dimensional relative values

200 m

High: 10.554
Low: 1.9621

Figure 1. Maps of experimental field with planar curvature (a); profile curvature (b); topography wetness index
(c); and selected maps of kriged predictions of yield (t/ha) during the observed years: 2010 — oat (d); 2011 —

winter wheat (e)
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Figure 2. Maps of calculated indices — Landsat 5 TM from the dates 4. 6. 2011 for winter wheat — normalised
difference vegetation index (NDVI) (a); green NDVI (GNDVI) (b); moisture stress index (MSI) (c) and 17. 6.

2010 for oat — NDVI (d); GNDVI (e); MSI (f)

very low in 2010 (Table 2, Figure 2), because of
intensive rainfall at the BBCH 80 growth stage,
causing the crop beaten. In this year, harvesting
losses caused a decrease of the yield. However, the
weather conditions followed an optimum course
for plant growth during the year 2010. This can
be seen in Table 1 and it confirms the correlations
presented in Table 4. Summary statistics in Table 3
shows that the G/NDVI spectral indices were
similar in 2006 and 2010. On the contrary, the MSI
values had a lower mean in 2010 than in 2006. It
corresponds with more precipitation distribution
on the dates of satellite data acquisition.

Winter wheat was grown in 2005 and 2011. In
2005, winter wheat benefited from sufficient water
availability in the whole field, especially during the
BBCH 30-59 growth stage. Correlations between
G/NDVI/MSI and yield were similar to the correla-
tions between these indices and those of oat. This
fact most probably confirms that winter wheat was
in a good condition on the dates of satellite data
acquisition. Table 2 shows that winter wheat was
more uniform in 2005 than in 2011. The correlation
coefficient between yield and TWI (Table 4) was
only 0.218. This weak correlation was caused by

high precipitation at the growth stages following
after the BBCH 59 stage. On the contrary, correla-
tions between G/NDVI/MSI and winter wheat yield
(Figures 1 and 2) reached high values in 2011, like
the correlations between yield and TWI. This crop
response was probably caused by low precipita-
tion during the growth stages BBCH 30-59. Low
precipitation can cause a significant displacement
of relatively higher yield to water-accumulating
depressions. The summary statistics presented in
Table 2 confirm the yield inequality, whereby both
the standard deviation and min—max range were
greater than in 2005. The G/NDVI/MSI values in
Table 3 are in accordance with the events described.

On the basis of the presented results, it may be
concluded that Landsat TM/ETM* data with 30 m
resolution can be used for deriving such indices that
can sufficiently explain plant variability on an 11.5 ha
field at the time of data acquisition. It may be general-
ly concluded that Landsat TM/ETM™ data with 30 m
resolution can be used for deriving such indices that
can sufficiently explain plant variability. On the basis
of the presented results, it may be then concluded
that these indices can explain plant variability on an
11.5 ha field at the time of data acquisition. Presented
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results further show that TWI can replace FAM and
SM in explaining the influence of topography on
crop yield. The relationship between TWI and yield
is similar to that between yield and both FAM and
SM (Kumhdlova et al. 2013, Kumhélova and Moudry
2014). Curvature was weakly correlated with all the
following attributes, which was confirmed also in
other studies (e.g., Guo et al. 2012).
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