
Cadmium (Cd) is a heavy metal released into the 
environment by thermal power and heating plants, 
metal industries, urban traffic, sewage sludge 
and phosphate fertilizers (Pavlíková et al. 2002a, 
Vollmann et al. 2015). Plants have no metabolic 
requirement for Cd, however it is relatively easy 
available to plants. A frequent outcome following 
exposure to Cd is the overproduction of reactive 
oxygen species, potentially causing oxidative dam-
age in plant cells and thus requiring the interven-
tion of antioxidant defense systems (Sandalio et 
al. 2001). Cadmium induces oxidative stress in 
plants by blocking essential functional groups in 
biomolecules and by indirect mechanisms such as 

interaction with the antioxidant defense system, 
disruption of the electron transport chain or in-
duction of lipid peroxidation (Cuypers et al. 2010). 
It decreases water stress tolerance of plants. The 
accumulation of Cd in plant tissues caused dam-
ages to the photosynthetic apparatus; it inhibited 
photosynthesis by increasing stomatal and meso-
phyll resistance to carbon dioxine uptake (Gallego 
et al. 2012). The reduction in photosynthetic rate 
led to a limited supply of metabolic energy and 
therefore to nitrogen (N) assimilation restriction. 
Nitrogen flow through amino acids can change in 
response to Cd stress. Plants that were exposed 
to toxic elements have also been shown to ac-

Changes in the contents of amino acids and the profile 
of fatty acids in response to cadmium contamination in spinach

V. Zemanová1, M. Pavlík2, D. Pavlíková1, P. Kyjaková3

1Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences 
Prague, Prague, Czech Republic

2Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 
Prague, Czech Republic

3Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech 
Republic, Prague, Czech Republic

ABSTRACT

Changes of amino acid (AAs) contents (glutamic acid – Glu, aspartic acid – Asp) and fatty acids profile (FAs) in 
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cumulate specific amino acid (AAs), which may 
have beneficial functions and play various roles 
in plants (Xu et al. 2012b, Pavlíková et al. 2014a).

The visual symptoms of Cd toxicity in plants 
are chlorosis and necrosis of leaves, browning of 
roots and cell apoptosis. The chlorosis may be due 
to Fe deficiency, because Fe binding in spinach 
is affected by Cd accumulation (Pavlíková et al. 
2002b, Martin et al. 2012). Cadmium is chemically 
similar to certain metal elements, including Fe, 
Zn, Mn, Mg and Ca, and, therefore, can displace 
these elements from metalloproteins (Verbruggen 
et al. 2009, Lux et al. 2010). The elements, such as 
Fe, Zn and Mn are cofactors of metalloenzymes 
(for example superoxide dismutase, cytochrome 
P450) and their contents related to plant defense 
against oxidative stress (Cakmak 2000).

Cadmium stress induced leaf senescence. During 
senescence activity of the plant hormones are 
changed and chlorophyll and proteins are degraded. 
Declining photosynthesis and continued active ex-
port of sugars combine to make senescing tissues 
increasingly carbon-starved. Amino acids derived 
from proteolysis are an important source of carbon 
skeletons. Glucogenic AAs give acetyl-CoA to stress 
metabolism. Simultaneously lipids are degraded 
into glycogen and free fatty acids (FAs), from which 
acetyl-CoA arises by ß-oxidation. Acetyl-CoA is 
the initial substrate for synthesis of FAs and several 
AAs. For this reason the aim of this study was to 
characterize changes in metabolism of transfer AAs 
and FAs composition in spinach in relationship to 
plant growing period and to Cd stress.

MATERIAL AND METHODS

Adaptation of spinach (Spinacia oleracea L. cv. 
Matador) plants to excessive Cd levels in soil was 
investigated in pot experiment repeated for two 
years. For this experiment, 20 spinach seeds were 
sown into plastic pods containing soil mixture as 
specified below. The plants (10 plants per pot) were 
cultivated from April to June under natural light 
and temperature conditions at the experimental 
hall of the Czech University of Life Sciences Prague, 
Czech Republic. The water regime was controlled 
and the soil moisture was kept at 60% MWHC 
(maximum water-holding capacity).

For cultivation of spinach plants ,  5 kg of 
Chernozem soil (pHKCl = 7.2, Cox = 1.83%, CEC 

(cation exchange capacity) = 258 mmol+/kg) was 
thoroughly mixed with 0.5 g N, 0.16 g P, and 0.4 g 
K applied in the form of ammonium nitrate and 
potassium hydrogen phosphate for control treat-
ment and with the same amount of nutrients plus 
cadmium (applied in Cd(NO3)2∙4 H2O) for treated 
variants. Three concentrations of Cd (Cd1 = 30, 
Cd2 = 60, Cd3 = 90 mg/kg) were applied. Each 
treatment was performed in three replications 
every year. The presented data are the average 
of both experimental years. Spinach plants were 
sampled 25, 40, 55 and 75 days after sowing.

The free amino acids from methanol + H2O extracts 
from mature leaves were determined using EZ-faast 
amino acid analysis procedure (Phenomenex, Santa 
Clara, USA). Samples were analyzed for AAs contents 
by GC-MS using the Hewlett Packard 6890N/5975 
MSD (Agilent Technologies, Torrance, USA). Samples 
were separated on a ZB-AAA 10 m × 0.25 mm 
AA analysis GC column using the constant carrier 
gas (He) flow (1.1 mL/min) (Pavlík et al. 2012).

For analyses of Cd contents plant samples were 
decomposed using the dry ashing procedure. The 
ash was dissolved in 1.5% HNO3. Aliquots of the 
certified reference material RM NCS DC 73350 
poplar leaves (purchased from Analytika, Czech 
Republic) were mineralized under the same condi-
tions for quality assurance. The Cd concentrations 
were analyzed by ICP-OES (Varian VistaPro, Varian, 
Mulgrave, Australia).

Overall content of fatty acids (free and derived from 
various lipids) was determined after their conver-
sion to respective methylesters (FAMEs). Samples 
of fresh biomass (~0.2 g) were extracted by 2 mL 
of CH3OH + CHCl3 (3:2, v/v) on a shaker for 24 h. 
Acid catalysed transesterification of FAs with ace-
tylchloride according to the method of Stránský and 
Jursík (1996) was carried out. The content of FAMEs 
was measured by GC-MS (Thermo Scientific DSQ II 
Single QuadrupoleGS-MS, Thermo Fisher Scientific, 
Waltham, USA) with a nonpolar column Zebron 
ZB-5 30 m × 0.25 mm × 0.25 µm (Zemanová et al. 
2015). FAs were determined in biomass sampled 
after 25 and 55 days of plant growing. For the lack 
of biomass it was not possible to determine FAs in 
Cd3 treatment. Individual FAMEs were identified 
by their mass spectra fragmentation as well as their 
coelution with synthetic standards (Supelco 37). 
The percentage of saturated fatty acids (SFAs) and 
unsaturated fatty acids (USFAs) was compared for 
control and treated plants.
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The statistical analyses were performed using 
multivariate analysis of variance (MANOVA) with 
multivariate F-value (Wilks’ lambda). A MANOVA 
was applied to identify the effect of treatments 
and growing period and their interactions as in-
dependent variables, and contents of Cd, yield of 
biomass, free AAs and FAs as dependent variables. 
A MANOVA was followed by the post-hoc com-
parison Tukey’s test (P < 0.05). All analyses were 
performed with Statistica 12.0 software (StatSoft, 
Tulsa, USA).

RESULTS AND DISCUSSION

The results of the pot experiment revealed the 
toxic effect of Cd on spinach plants. Plant response 
to excessive Cd content in soil was assessed on 
the basis of a decreased spinach dry matter and 
increased concentrations of this elements in the 
aboveground biomass (Figures 1 and 2). Growing 
Cd doses (from 30–90 mg Cd/kg soil) were asso-
ciated with strong inhibition of the aboveground 
biomass (23.5–6.3 g per pot after 75 days) and with 
enhancement of Cd content (0.60–72.38 mg/kg 
after 75 days) in leaves. Compared to the untreated 
control, the biomass yield of Cd3 treatment was 
reduced to ca. 27% while the Cd content in aboveg-
round biomass was enhanced up to 120-fold. No 

significant differences in the biomass yields and 
Cd contents in plants were observed between in-
dividual experimental years. Our data correspond 
with those by Pavlík et al. (2010), Pavlíková et al. 
(2014a) who reported that excessive amounts of 
toxic elements in contaminated soil inhibited plant 
growth and development due to their phytotoxicity. 
The damage caused by Cd led to senescence and 
to the bleaching of chlorophylls at Cd3 treatment. 
Magnesium in chlorophyll is replaced with Cd 
(Küpper et al. 1998). The visual symptoms of Cd 
toxicity – chlorosis and necrosis of leaves were 
confirmed for example by Pavlíková et al. (2008) 
and Martin et al. (2012).

Plants exposed to toxic metals accumulated spe-
cific AAs, which may have beneficial functions and 
play various roles (Xu et al. 2012a, 2012b, Pavlíková 
et al. 2014a,b). Chaffei et al. (2004) suggested that 
an increase in the proportion of high N:C by AAs, 
is a protective strategy in plants. Consistent with 
this hypothesis, our analyses indicated the accu-
mulation of a large amount of glutamic acid (Glu) 
and aspartic acid (Asp) in Cd treatments in 55th 
day of plant cultivation (Figures 3a,b). The high-
est accumulations of both AAs were determined 
on Cd3 treatment after 55 days of cultivation. 
Glu and Asp are used to transfer N from source 
organs to sink tissues and to build up reserves 
during periods of N availability for subsequent use 
in growth, defense, and reproductive processes. 
Strong decrease of both AAs were confirmed in 
the last sampling period for Cd treatments (after 
75 days of plant growing). Glu content of Cd3 
treatment was reduced to ca. 64% of the control 
treatment. Asp content was decreased to ca. 72%. 
This decrease related to the interaction of onto-
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Figure 1. Aboveground biomass yield (g dry matter  
per pot) of spinach aboveground biomass. Explanation 
for Figures 1–4: Spinach was grown under varying Cd 
concentrations (0, 30, 60, 90 mg Cd/kg). Plants were 
harvested after 25, 40, 55 and 75 days of spinach culti-
vation. Data represent means ± standard error of three 
replicates every year (n = 6). Different letters indicate 
significantly different values (P < 0.05) between treat-
ment × growing period calculated by MANOVA
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genetic period and effect of Cd stress. Changes of 
Asp contents were less significant in contrast to 
Glu, because Glu is used in the synthesis of gluta-
thione and phytochelatins in plant cells (Vitória et 
al. 2001). According to Zemanová et al. (2013) the 
declines of contents of both AAs can be caused by 
intensive syntheses of plant defense elicitors. Pavlík 
et al. (2012) confirmed that contamination of heavy 
metals caused depletion in the pools of free Glu and 
Asp in lettuce plants growing for 75 days.

As it was calculated using the multivariate analy-
sis of variance MANOVA, contents of Cd, Asp, 
Glu and yield of biomass were significantly affect-
ed by treatments (Wilks’ lambda 0.003, F = 226.2, 
P = 0.00*), growing period (Wilks’ lambda 0.33, 
F = 77.6, P = 0.00*) and treatments × growing period 
(Wilks’ lambda 0.044, F = 17.33, P = 0.00*). The results 
showed the most significant effect of treatments.

The comparison between treatments showed 
significant differences of FAs composition related 
to Cd stress only in 25th day of plant cultivation 
(Figure 4). The Cd contamination the increased 
the content of saturated fatty acids (by 44% for 
Cd1 and 94% for Cd2) compared to control. Our 
results from the 55th day of plant cultivation con-
firmed increase only by 16% for both Cd treat-
ments. SFA contained in plants – palmitic acid 
(16:0) was detected in all treatments and in both 
sampling periods. Arachidic acid (20:0) was only 

detected in control treatment in day 25 of plant 
cultivation (Figure 5).

Analyses of unsaturated fatty acids have con-
f irmed 7,10,13-hexadecatrienoic (16:3n-3), 
9,12-octadecadienoic (linoleic acid, 18:2n-6) and 
9,12,15-octadecatrienoic (α-linolenic acid, 18:3n-3) 
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acids in all treatments. Decreases of USFAs per-
centage were detected for 16:3n-3 and 18:3n-3 
FAs in both Cd treatments. 16:3n-3 USFA is the 
product of desaturases from 16:0 and it is used 
as substrate for biosynthesis of different USFAs 
(Zemanová et al. 2015). For acclimation to oxida-
tive stress plants mainly need USFAs – 18:2n-6, 
18:3n-3. The percentage of 18:2n-6 FA increased 
in plants with Cd contamination. In accordance 
with our results Verdoni et al. (2001) published 
a significant decrease of linolenic acid (18:3) and 
increase of 18:1 and 18:2 FAs in primary leaves of 
tomato. Upchurch (2008) reviewed that in stress 
tolerant plants the degree of membrane lipid un-
saturation, principally linolenic acid decreases 
in response to heavy metal stresses. Our results 
supported this finding. For plant growing under 
oxidative stress linolenic acid is substrate rap-
idly degraded into metabolites, which lead to the 
production of oxylipins, for example jasmonic 
acid regulating growth and plant development 
(Savchenko et al. 2014).

As it was calculated using the multivariate 
analysis of variance MANOVA, contents of SFAs 
and USFAs were significantly affected by variants 
(Wilks’ lambda 0.067, F = 35.53, P = 0.00*), growing 
period (Wilks’ lambda 0.201, F = 49.2, P = 0.00*) 
and variants × growing period (Wilks’ lambda 
0.119, F = 23.60, P = 0.00*). The most significant 
effect was confirmed for plant growing period.

Zemanová et al. (2015) clearly showed impor-
tance of a relationship between Cd accumulation 
and the FAs composition in Cd hyperaccumulator 
Noccaea caerulescens. According to these results 
SFAs decrease and USFAs increase in biomass of 
N. caerulescens with increasing Cd concentration 
is a typical feature of plants resistant to Cd stress. 

An opposite trend of FAs content was determined 
in spinach biomass – non hyperaccumulating 
plant. The results of Nouairi et al. (2006) indi-
cated similar changes of FAs in leaves of Brassica 
juncea grown under Cd stress. The comparison 
between hyperaccumulator and spinach showed 
significant differences of FAs composition related 
to Cd chronic stress. The number of identified FAs 
in spinach biomass was very low compared to the 
hyperaccumulator. Saturated very-long-chain fatty 
acids (VLCFAs) were found only in hyperaccumu-
lating plants. Biosynthesis of VLCFAs decrease 
the amount of energy necessary for plant growth 
and development. Catabolic processes of these 
FAs decreased plant sensitivity to environmental 
stress. This finding reflects that hyperaccumula-
tor in contrast to spinach has an efficient defense 
strategy relating to changes in FAs composition.

The results of our experiment showed changes in 
transfer AAs contents (the highest accumulation of 
AAs on Cd3 treatment after 55 days of cultivation) 
and in FAs composition (significant increase of 
palmitic acid) in spinach in relationship to grow-
ing Cd soil contamination. Multivariate analysis of 
variance confirmed a significant effect of growing 
period of plants to these changes. For this reason 
investigation of changes in the plant metabolism 
is necessary to test in long-term conditions.
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