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ABSTRACT

Remote sensing is often used for yield prediction as well as for crop monitoring. This paper describes how Landsat
satellite data can be used to derive a growth model calculated from normalised difference vegetation index that can
predict winter wheat (Triticum aestivum) and winter oilseed rape (Brassica napus) phenological state using the
Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie scale. Time series of Landsat images were
chosen from the years 2004, 2008 and 2012, when winter oilseed rape was grown, and 2005, 2009, 2011 and 2013,
when winter wheat was grown in the same experimental field. The images were selected from the whole growing
season of both crops. An advantage of this method is the easy availability of the remote sensing and its easy applica-
tion for deriving a prediction model from vegetation indices. Our results showed that Landsat images, after correct
pre-processing, can be used for winter wheat and winter oilseed rape growth model prediction.
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Winter wheat and winter oilseed rape are among
the most common and also strategic crops in the
Czech Republic (e.g. Kréek et al. 2014, Faméra et
al. 2015). Periodicity in crop life cycle allows the
phenological staging of the crop, although actual
development depends on various factors such as the
type of crop or weather conditions (Hunkar et al.
2012). Biologische Bundesanstalt, Bundessortenamt
und Chemische Industrie (BBCH) scale defines
exactly these phases of the crop growth which
are actually observed and it has been widely ac-
cepted for use in cereals, rape, bean and sunflower
(Bleiholder et al. 1989, Lancashire et al. 1991).

The methods of remote sensing can be used for
monitoring of phenological phases especially in
large plots. Optical remote sensing data was used
to estimate crop yields, terms of agro-technical in-
tervention and crop management (Doraiswamy et
al. 2004, Kumhdlova et al. 2014). Jongschaap and

Schouten (2005) reported that wheat area could be
estimated with more than 80% users’ accuracy and
model-based estimates of regional wheat produc-
tion were in agreement with agricultural statistics.

Spectral reflectance from satellite image data was
used to study vegetation cover (Chuvieco 1990).
Few vegetation indices have been developed spe-
cifically for plant water stress evaluation; several
of these indices were based on the relationship
between near infrared (NIR) and red bands. An
early example is the ratio vegetation index (RVI)
(Birth and McVey 1968), defined as the ratio be-
tween NIR and red band reflectance. Nowadays
the most popular index is normalized difference
vegetation index (NDVI) (Rouse et al. 1974), the
normalized ratio between NIR and red bands.
NDVTis often used for the evaluation of different
crops, different purposes and at different scales
(Julien et al. 2011, Tornos et al. 2014).
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The NDVI was used for the monitoring of vegeta-
tion dynamics just computed from digital number
bands (Chuvieco 1990, Michener and Houhoulis
1997). This NDVTI at the top of the atmosphere is
always smaller than at the top of the canopy as it
was shown in the simulations using a vegetation/
atmosphere radiative transfer model (Myneni and
Asrar 1994). The contributions of the atmosphere
to NDVI are significant (McDonald et al. 1998), but
atmospheric correction is not always necessary in
order to perform the classification or to detect the
changes (Song et al. 2001). Recently, some models
of atmospheric correction have been developed
such as quick atmospheric correction (QUAC)
(Bernstein et al. 2012) and fast line-of-sight at-
mospheric analysis of hypercubes (FLAASH) (Li
et al. 2014). These models perform the correc-
tion using top of atmosphere (TOA) data from
the scene only. These processes of atmospheric
correction usually consist of two parts. The first
one is to convert the digital numbers (DNs) to
radiance values. The second one is to convert the
radiance data to reflectance. These corrections
make it possible to build time series images from
different sensors, for example MODIS, MERIS,
Landsat or SPOT (Bégué et al. 2008).

The use and usefulness of high spatial resolution
sensors and the spectral indices derived can be
connected with the agricultural knowledge such
as the BBCH phenological status scale (Bleiholder
et al. 1989). In the literature, some authors have
related optical remote sensing data with field data
on particular dates (Mistele and Schmidhalter
2008, Laurila et al. 2010). Nevertheless, time series
allow the application of statistical models for crop
growth development estimation. A time series
disadvantage is the need of a large set of images
with homogenous atmospheric conditions. It is
possible, however, to smooth out the influence
of the atmosphere with the help of software tools
for atmospheric correction. In the literature, some
authors used the atmospheric correction pre-
processing (Hunt et al. 2013, Jamali et al. 2015)
while other performed no atmospheric correction
(Bégué et al. 2008).

The time series analysis is not enough to gain
the knowledge of crop development with the aim
to make predictions about the phenological status
from remote sensing indices such as NDVI. For
crop status prediction, a mathematical model must
be established. In the past, remote sensing im-
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ages time series analyses of the natural landscape
were used to formulate the mathematical models
of gravel pit ponds (Dominguez et al. 2011) and
natural vegetation phenology (Chao Rodriguez
et al. 2014).

It is clear from this literature review that NDVI
has a potential to be used for a prediction of agri-
cultural crops growth. That is why the main aim
of this study is to introduce a predictive model
for winter wheat and winter oilseed rape growth
relating to their BBCH scale phenological status
with the use of remotely sensed NDVL. In this
paper the suitability of Landsat data atmospheric
correction for the needs of agriculture will be as-
sessed. Different methods were compared with the
aim to determine which atmospheric correction is
the most suitable to carry out the remote sensing
of agricultural areas, or whether any atmospheric
correction is required at all.

MATERIAL AND METHODS

Study area. The study area selected is an experi-
mental field of 11.5 ha in Prague-Ruzyné (50°05'N,
14°17'30"E), Czech Republic, with soils classified
as Haplic Luvisol. Most of the field has a south-
ern aspect and the elevation ranges from 338.5
to 357.5 m a.s.l. Conventional arable soil tillage
technology and fixed crop rotation were used on
this field. Detailed description of the crop rotation
can be found in Kumhélovd and Moudry (2014).
Total monthly precipitation and temperature data
were provided by the Agro meteorology station at
the Crop Research Institute in Prague-Ruzyné for
observation years and are summarized in Table 1.

Remote sensing data processing. Landsat 5
and Landsat 7 cloud free images were downloaded
from the USGS Global Visualization Viewer (http://
earthexplorer.usgs.gov/) for the periods between
March and June in years 2004, 2008 and 2012 for
winter oilseed rape and in 2005, 2011, 2009 and
2013 for winter wheat (Table 2).

NDVI was calculated using four different methods
in the study area (111 pixels): (a) from original images;
(b) from images converted to TOA reflectance; (c)
from images converted to reflectance using QUAC
correction; (d) from images converted to reflectance
bands using the FLAASH correction. The remote
sensing software used for processing all images in
this work was ENVI5.1 (Excelis, Inc., McLean, USA).
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Table 1. Precipitations and temperatures in different growth stages of BBCH scale recorded at the experimental
field in the year 2004, 2008, 2012 for winter oilseed rape and 2005, 2011, 2013 for winter wheat

Winter oilseed rape

Winter wheat

precipitation (mm)

temperature (°C)

precipitation (mm) temperature (°C)

2004 2008 2012 2004 2008 2012 2005 2011 2013 2005 2011 2013
0-19 BBCH 52.8 72.0 61.3 16.5 13.5 16.8 20.0 15.2 25.6 9.6 7.9 9.7
20-29 BBCH 103.4 1053 167.8 5.4 5.3 4.3 83.4  104.4 233.5 4.0 3.4 2.9
30-59 BBCH 157.2  112.6 54.1 14.6 11.8 9.5 90.4 395 175.8 13.9 14.8 139
After 60 BBCH 46.6 99.6 258.9 19.1 18.9 17.8  207.8 2574 208.5 18.4 179 20.1
Sum 360.0 389.5 542.1 - - - 401.6  416.5 634.4 - - -
Mean 90.0 97.4 135.5 13.9 12.4 12.1 100.4  104.1 160.9 11.5 11.0 11.7

RESULTS AND DISCUSSION

Atmospheric correction processed with different
methods is visualised in Figure 1. The graphs in
Figure 1 show that the absence of field spectrum
data suggested the use of spectral indices based
on field data measures, assuming that the highest
and the lowest reflectance values should be similar
for the same cover. Of the two atmospheric cor-
rections tested, QUAC was found unsuitable for
winter oilseed rape because reflectance spectra
behaved differently in images at the same pixel. It
determined atmospheric compensation parameters
directly from the information contained within
the scene (observed pixel spectra), without ancil-
lary information. However, the highest and the
lowest reflectance values and the highest NDVI
were consistent in all images for the FLAASH
atmospheric correction.

NDVI average values (from —0.05 x NDVI av-
erage to 0.05 x NDVTI average) for each crop and
image were plotted with respect to BBCH scale
in order to construct a mathematical model that

Table 2. Available Landsat images for the selected years

will fit each crop type (Figures 2 and 3). The visual
analysis showed the information gap which changed
between images randomly. This inaccuracy af-
fected images from the Landsat 7 only. The sensor
of Landsat 7 satellite was malfunctioned which
caused a lack of information.

NVDI model for winter wheat is shown in Figure 2.
Kumhadlovi et al. (2014) mentioned that the NDVI
value of soil without vegetation was 0.25 in this study
field. This value is usually influenced by the soil
type. Then NDVTIincreased until the plant reached
phenological phase 49 BBCH (end of booting). After
the beginning of heading, NDVI value decreased
showing the changes in plant spectral reflectance
between heading and flowering. NDVI value in-
creased again after the end of flowering (69 BBCH)
because of changes in plants structure and col-
our after the end of flowering. When started the
ripening, (80 BBCH) plants changed their colour
from green to yellow and the reflectance begun
to decrease. Li et al. (2015) reported that NDVI
values decreased during the period 51-69 BBCH.
They used Zadoks scale instead of BBCH scale.

Crop Date Sensor Satellite
Winter 26-September-2003; 28-Apr-2004; 30-May-2004; 8-Jun-2004; 31-Mar-2008;
oilseed 2-May-2008; 9-May-2008; 25-May-2008; 10-Jun-2008; 17-Mar-2012; ETM* Landsat 7
rape 26-Mar-2012; 27-Apr-2012; 4-May-2012; 19-May-2012; 29-May-2012

3-Jun-2005; 4-Jun-2011 ™ Landsat 5
Winter 5-October-2004; 16-Apr-2005; 2-May-2005; 3-Apr-2009; 10-Apr-2009;
wheat 19-Apr-2009; 26-Apr-2009; 12-May-2009; 13-Jun-2009; 24-Apr-2011; ETM* Landsat 7

19-May-2011; 26-May-2011; 18-Jun-2013
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Figure 1. Atmospheric correction processed with different methods: (a) original digital number from sensor
(without atmospheric correction); (b) fast line-of-sight atmospheric analysis of hypercubes; (c) top of atmos-

phere; and (d) quick atmospheric correction

Franch et al. (2015) studied the prediction of har-
vest on the basis of vegetation indices during the
later growth stages and reported that NDVI values
decreased to 0.2 before harvest.

In the case of rape available data showed that
when the plants began to grow, the NDVI value
increased over 0.25 (Figure 3). Changes in NDVI

NDVI

values were similar to winter wheat. As the vegeta-
tion continued to grow and the green vegetation
covered whole surface, NVDI value increased
until flowering (60 BBCH). Behrens et al. (2004)
reported that rape plants had major differences in
the growth phase during early flowering (60 BBCH)
which was caused by uneven development of dif-
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Figure 2. Graph of normalized difference vegetation index (NDVI) and BBCH scale dependency in the case of
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Figure 3. Graph of normalized difference vegetation index (NDVI) and BBCH scale dependency in the case of

winter oilseed rape

ferent parts of crop stand. That is typical for i.e.
sloping plots. NDVI value was influenced by colour
change from green to yellow, decaying to about
0.35 in the phenological phase 65 BBCH (full flow-
ering). After flowering, NDVI values increased
again due to colour change from yellow to green,
and fallen down again during ripening (Figure 3).
NVDI values of rape were discussed by other au-
thors: Pan et al. (2013) indicated a decrease in NDVI
values during the full flowering (65 BBCH) to 0.35
and referred to the reduction of NDVI values up
to 0.28 during the maturation. Zhu et al. (2008)
showed similar results and reported that a decrease
of NDVI was caused by change of reflectance.

Linear regression between NDVI from Landsat im-
ages and predicted model were visualised in Figure 4.
It was found out that NDVI model for winter wheat
and winter oilseed rape had an acceptable coefficient
of determination (0.93 for winter wheat; 0.77 for
winter oilseed rape; at 0.05 significance level).

Bartoszek (2014) introduced a general assess-
ment of the winter oilseed rape vegetation state
over a larger area; remote sensing can constitute
the only credible source of information. Bartoszek
(2014) further stated that remote sensing allows the
determination of phenological stage of plants in
areas of different dimensions and areas separated
from each other, as well as the determination of
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Figure 4. Dependence between normalized difference vegetation index (NDVI) from Landsat Images and NDVI

from predicted model
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the growth and development of winter oilseed
rape using NDVI from satellite data.

Differences between the model and real crop
conditions were found in our data and in other
papers as well. Jongschaap and Schouten (2005)
introduced that these differences are presumably
associated with management practices, such as
soil conditions and fertilizer application. The use
of a remote sensing run-time calibration method
for dynamic simulation models may result in in-
creased simulation accuracy. The advantage of our
proposed models is that they are simpler and use
reflectance to determine NDVI. Jongschaap and
Schouten (2005) used DN values to determinate
NDVT in their study.

Through the use of BBCH scale the relationship
between NDVIand BBCH is independent on agri-
cultural field geographic location and period of the
year (Peltonen-Sainio et al. 2010, Pan et al. 2013).

It may be concluded on the basis of the presented
results that Landsat TM/ETM™* images can be used
for the modelling of plant growth estimation with
the help of prediction model. Landsat TM/ETM*
images can be also used for deriving NDVT for those
purposes as well, although several limitations ap-
peared during the images processing. Applicability
of images from ETM+ sensor was one of these
limitations. Landsat 7 (ETM+) sensor had a failure
of the Scan Line Corrector and therefore several
images had wedge-shaped gaps since May 31°t, 2003.
Other limitations are related with cloud-free images
availability in a growing season and with the use
of atmospheric correction. It was concluded that
to make an atmospheric correction (FLAASH) of
selected images for correct images processing and
then for NDVI calculation is necessary. This is in a
good agreement with Haboudane et al. (2004) who
stated that substantial efforts were expended in
improving the NDVI and in developing new indices
aiming to compensate for soil background influ-
ences, as well as for atmospheric effects. Vegetation
indices still have definite intrinsic limitations; they
are not a single measure of a specific variable of
interest such as pigment content, plant geometry,
or canopy architecture.
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