
Winter wheat and winter oilseed rape are among 
the most common and also strategic crops in the 
Czech Republic (e.g. Krček et al. 2014, Faměra et 
al. 2015). Periodicity in crop life cycle allows the 
phenological staging of the crop, although actual 
development depends on various factors such as the 
type of crop or weather conditions (Hunkár et al. 
2012). Biologische Bundesanstalt, Bundessortenamt 
und Chemische Industrie (BBCH) scale defines 
exactly these phases of the crop growth which 
are actually observed and it has been widely ac-
cepted for use in cereals, rape, bean and sunflower 
(Bleiholder et al. 1989, Lancashire et al. 1991).

The methods of remote sensing can be used for 
monitoring of phenological phases especially in 
large plots. Optical remote sensing data was used 
to estimate crop yields, terms of agro-technical in-
tervention and crop management (Doraiswamy et 
al. 2004, Kumhálová et al. 2014). Jongschaap and 

Schouten (2005) reported that wheat area could be 
estimated with more than 80% users’ accuracy and 
model-based estimates of regional wheat produc-
tion were in agreement with agricultural statistics.

Spectral reflectance from satellite image data was 
used to study vegetation cover (Chuvieco 1990). 
Few vegetation indices have been developed spe-
cifically for plant water stress evaluation; several 
of these indices were based on the relationship 
between near infrared (NIR) and red bands. An 
early example is the ratio vegetation index (RVI) 
(Birth and McVey 1968), defined as the ratio be-
tween NIR and red band reflectance. Nowadays 
the most popular index is normalized difference 
vegetation index (NDVI) (Rouse et al. 1974), the 
normalized ratio between NIR and red bands. 
NDVI is often used for the evaluation of different 
crops, different purposes and at different scales 
(Julien et al. 2011, Tornos et al. 2014).
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The NDVI was used for the monitoring of vegeta-
tion dynamics just computed from digital number 
bands (Chuvieco 1990, Michener and Houhoulis 
1997). This NDVI at the top of the atmosphere is 
always smaller than at the top of the canopy as it 
was shown in the simulations using a vegetation/
atmosphere radiative transfer model (Myneni and 
Asrar 1994). The contributions of the atmosphere 
to NDVI are significant (McDonald et al. 1998), but 
atmospheric correction is not always necessary in 
order to perform the classification or to detect the 
changes (Song et al. 2001). Recently, some models 
of atmospheric correction have been developed 
such as quick atmospheric correction (QUAC) 
(Bernstein et al. 2012) and fast line-of-sight at-
mospheric analysis of hypercubes (FLAASH) (Li 
et al. 2014). These models perform the correc-
tion using top of atmosphere (TOA) data from 
the scene only. These processes of atmospheric 
correction usually consist of two parts. The first 
one is to convert the digital numbers (DNs) to 
radiance values. The second one is to convert the 
radiance data to reflectance. These corrections 
make it possible to build time series images from 
different sensors, for example MODIS, MERIS, 
Landsat or SPOT (Bégué et al. 2008).

The use and usefulness of high spatial resolution 
sensors and the spectral indices derived can be 
connected with the agricultural knowledge such 
as the BBCH phenological status scale (Bleiholder 
et al. 1989). In the literature, some authors have 
related optical remote sensing data with field data 
on particular dates (Mistele and Schmidhalter 
2008, Laurila et al. 2010). Nevertheless, time series 
allow the application of statistical models for crop 
growth development estimation. A time series 
disadvantage is the need of a large set of images 
with homogenous atmospheric conditions. It is 
possible, however, to smooth out the influence 
of the atmosphere with the help of software tools 
for atmospheric correction. In the literature, some 
authors used the atmospheric correction pre-
processing (Hunt et al. 2013, Jamali et al. 2015) 
while other performed no atmospheric correction 
(Bégué et al. 2008).

The time series analysis is not enough to gain 
the knowledge of crop development with the aim 
to make predictions about the phenological status 
from remote sensing indices such as NDVI. For 
crop status prediction, a mathematical model must 
be established. In the past, remote sensing im-

ages time series analyses of the natural landscape 
were used to formulate the mathematical models 
of gravel pit ponds (Domínguez et al. 2011) and 
natural vegetation phenology (Chao Rodríguez 
et al. 2014).

It is clear from this literature review that NDVI 
has a potential to be used for a prediction of agri-
cultural crops growth. That is why the main aim 
of this study is to introduce a predictive model 
for winter wheat and winter oilseed rape growth 
relating to their BBCH scale phenological status 
with the use of remotely sensed NDVI. In this 
paper the suitability of Landsat data atmospheric 
correction for the needs of agriculture will be as-
sessed. Different methods were compared with the 
aim to determine which atmospheric correction is 
the most suitable to carry out the remote sensing 
of agricultural areas, or whether any atmospheric 
correction is required at all.

MATERIAL AND METHODS

Study area. The study area selected is an experi-
mental field of 11.5 ha in Prague-Ruzyně (50°05'N, 
14°17'30''E), Czech Republic, with soils classified 
as Haplic Luvisol. Most of the field has a south-
ern aspect and the elevation ranges from 338.5 
to 357.5 m a.s.l. Conventional arable soil tillage 
technology and fixed crop rotation were used on 
this field. Detailed description of the crop rotation 
can be found in Kumhálová and Moudrý (2014). 
Total monthly precipitation and temperature data 
were provided by the Agro meteorology station at 
the Crop Research Institute in Prague-Ruzyně for 
observation years and are summarized in Table 1.

Remote sensing data processing. Landsat 5 
and Landsat 7 cloud free images were downloaded 
from the USGS Global Visualization Viewer (http://
earthexplorer.usgs.gov/) for the periods between 
March and June in years 2004, 2008 and 2012 for 
winter oilseed rape and in 2005, 2011, 2009 and 
2013 for winter wheat (Table 2).

NDVI was calculated using four different methods 
in the study area (111 pixels): (a) from original images; 
(b) from images converted to TOA reflectance; (c) 
from images converted to reflectance using QUAC 
correction; (d) from images converted to reflectance 
bands using the FLAASH correction. The remote 
sensing software used for processing all images in 
this work was ENVI 5.1 (Excelis, Inc., McLean, USA).
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RESULTS AND DISCUSSION

Atmospheric correction processed with different 
methods is visualised in Figure 1. The graphs in 
Figure 1 show that the absence of field spectrum 
data suggested the use of spectral indices based 
on field data measures, assuming that the highest 
and the lowest reflectance values should be similar 
for the same cover. Of the two atmospheric cor-
rections tested, QUAC was found unsuitable for 
winter oilseed rape because reflectance spectra 
behaved differently in images at the same pixel. It 
determined atmospheric compensation parameters 
directly from the information contained within 
the scene (observed pixel spectra), without ancil-
lary information. However, the highest and the 
lowest reflectance values and the highest NDVI 
were consistent in all images for the FLAASH 
atmospheric correction.

NDVI average values (from –0.05 × NDVI av�-
erage to 0.05 × NDVI average) for each crop and 
image were plotted with respect to BBCH scale 
in order to construct a mathematical model that 

will fit each crop type (Figures 2 and 3). The visual 
analysis showed the information gap which changed 
between images randomly. This inaccuracy af-
fected images from the Landsat 7 only. The sensor 
of Landsat 7 satellite was malfunctioned which 
caused a lack of information.

NVDI model for winter wheat is shown in Figure 2. 
Kumhálová et al. (2014) mentioned that the NDVI 
value of soil without vegetation was 0.25 in this study 
field. This value is usually influenced by the soil 
type. Then NDVI increased until the plant reached 
phenological phase 49 BBCH (end of booting). After 
the beginning of heading, NDVI value decreased 
showing the changes in plant spectral reflectance 
between heading and flowering. NDVI value in-
creased again after the end of flowering (69 BBCH) 
because of changes in plants structure and col-
our after the end of flowering. When started the 
ripening, (80 BBCH) plants changed their colour 
from green to yellow and the reflectance begun 
to decrease. Li et al. (2015) reported that NDVI 
values decreased during the period 51–69 BBCH. 
They used Zadoks scale instead of BBCH scale. 

Table 2. Available Landsat images for the selected years

Crop Date Sensor Satellite

Winter 
oilseed 
rape

26-September-2003; 28-Apr-2004; 30-May-2004; 8-Jun-2004; 31-Mar-2008; 
2-May-2008; 9-May-2008; 25-May-2008; 10-Jun-2008; 17-Mar-2012; 
26-Mar-2012; 27-Apr-2012; 4-May-2012; 19-May-2012; 29-May-2012

ETM+ Landsat 7

Winter 
wheat

3-Jun-2005; 4-Jun-2011 TM Landsat 5

5-October-2004; 16-Apr-2005; 2-May-2005; 3-Apr-2009; 10-Apr-2009; 
19-Apr-2009; 26-Apr-2009; 12-May-2009; 13-Jun-2009; 24-Apr-2011; 

19-May-2011; 26-May-2011; 18-Jun-2013
ETM+ Landsat 7

Table 1. Precipitations and temperatures in different growth stages of BBCH scale recorded at the experimental 
field in the year 2004, 2008, 2012 for winter oilseed rape and 2005, 2011, 2013 for winter wheat

Winter oilseed rape Winter wheat

precipitation (mm) temperature (°C) precipitation (mm) temperature (°C)

2004 2008 2012 2004 2008 2012 2005 2011 2013 2005 2011 2013

0–19 BBCH 52.8 72.0 61.3 16.5 13.5 16.8 20.0 15.2 25.6 9.6 7.9 9.7

20–29 BBCH 103.4 105.3 167.8 5.4 5.3 4.3 83.4 104.4 233.5 4.0 3.4 2.9

30–59 BBCH 157.2 112.6 54.1 14.6 11.8 9.5 90.4 39.5 175.8 13.9 14.8 13.9

After 60 BBCH 46.6 99.6 258.9 19.1 18.9 17.8 207.8 257.4 208.5 18.4 17.9 20.1

Sum 360.0 389.5 542.1 – – – 401.6 416.5 634.4 – – –

Mean 90.0 97.4 135.5 13.9 12.4 12.1 100.4 104.1 160.9 11.5 11.0 11.7
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Franch et al. (2015) studied the prediction of har-
vest on the basis of vegetation indices during the 
later growth stages and reported that NDVI values 
decreased to 0.2 before harvest. 

In the case of rape available data showed that 
when the plants began to grow, the NDVI value 
increased over 0.25 (Figure 3). Changes in NDVI 

values were similar to winter wheat. As the vegeta-
tion continued to grow and the green vegetation 
covered whole surface, NVDI value increased 
until flowering (60 BBCH). Behrens et al. (2004) 
reported that rape plants had major differences in 
the growth phase during early flowering (60 BBCH) 
which was caused by uneven development of dif-
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Figure 1. Atmospheric correction processed with different methods: (a) original digital number from sensor 
(without atmospheric correction); (b) fast line-of-sight atmospheric analysis of hypercubes; (c) top of atmos-
phere; and (d) quick atmospheric correction

Figure 2. Graph of normalized difference vegetation index (NDVI) and BBCH scale dependency in the case of 
winter wheat
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ferent parts of crop stand. That is typical for i.e. 
sloping plots. NDVI value was influenced by colour 
change from green to yellow, decaying to about 
0.35 in the phenological phase 65 BBCH (full flow-
ering). After flowering, NDVI values increased 
again due to colour change from yellow to green, 
and fallen down again during ripening (Figure 3). 
NVDI values of rape were discussed by other au-
thors: Pan et al. (2013) indicated a decrease in NDVI 
values during the full flowering (65 BBCH) to 0.35 
and referred to the reduction of NDVI values up 
to 0.28 during the maturation. Zhu et al. (2008) 
showed similar results and reported that a decrease 
of NDVI was caused by change of reflectance.

Linear regression between NDVI from Landsat im-
ages and predicted model were visualised in Figure 4. 
It was found out that NDVI model for winter wheat 
and winter oilseed rape had an acceptable coefficient 
of determination (0.93 for winter wheat; 0.77 for 
winter oilseed rape; at 0.05 significance level).

Bartoszek (2014) introduced a general assess-
ment of the winter oilseed rape vegetation state 
over a larger area; remote sensing can constitute 
the only credible source of information. Bartoszek 
(2014) further stated that remote sensing allows the 
determination of phenological stage of plants in 
areas of different dimensions and areas separated 
from each other, as well as the determination of 

Figure 3. Graph of normalized difference vegetation index (NDVI) and BBCH scale dependency in the case of 
winter oilseed rape

Figure 4. Dependence between normalized difference vegetation index (NDVI) from Landsat Images and NDVI 
from predicted model
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the growth and development of winter oilseed 
rape using NDVI from satellite data.

Differences between the model and real crop 
conditions were found in our data and in other 
papers as well. Jongschaap and Schouten (2005) 
introduced that these differences are presumably 
associated with management practices, such as 
soil conditions and fertilizer application. The use 
of a remote sensing run-time calibration method 
for dynamic simulation models may result in in-
creased simulation accuracy. The advantage of our 
proposed models is that they are simpler and use 
reflectance to determine NDVI. Jongschaap and 
Schouten (2005) used DN values to determinate 
NDVI in their study.

Through the use of BBCH scale the relationship 
between NDVI and BBCH is independent on agri-
cultural field geographic location and period of the 
year (Peltonen-Sainio et al. 2010, Pan et al. 2013).

It may be concluded on the basis of the presented 
results that Landsat TM/ETM+ images can be used 
for the modelling of plant growth estimation with 
the help of prediction model. Landsat TM/ETM+ 
images can be also used for deriving NDVI for those 
purposes as well, although several limitations ap-
peared during the images processing. Applicability 
of images from ETM+ sensor was one of these 
limitations. Landsat 7 (ETM+) sensor had a failure 
of the Scan Line Corrector and therefore several 
images had wedge-shaped gaps since May 31st, 2003. 
Other limitations are related with cloud-free images 
availability in a growing season and with the use 
of atmospheric correction. It was concluded that 
to make an atmospheric correction (FLAASH) of 
selected images for correct images processing and 
then for NDVI calculation is necessary. This is in a 
good agreement with Haboudane et al. (2004) who 
stated that substantial efforts were expended in 
improving the NDVI and in developing new indices 
aiming to compensate for soil background influ-
ences, as well as for atmospheric effects. Vegetation 
indices still have definite intrinsic limitations; they 
are not a single measure of a specific variable of 
interest such as pigment content, plant geometry, 
or canopy architecture.
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