
Starch is the main component of digestible car-
bohydrates; it consists of amylose and amylopectin. 
The so-called waxy starch consists almost exclu-
sively of branched chains typical for amylopectin. 
A macromolecule of amylopectin composed of 
α-(1 → 4)-d-glucopyranose chains connected 
with α-(1 → 6)-linkages is arranged in a clustered 
structure forming crystalline regions of the starch.

The internal organisation of the chains within the 
building blocks of starch granules is unique to each 
plant and manifests the shape and size of the gran-
ules. E.g. Zhou et al. (2014) found that waxy wheat 
starch has a more spherical disc-like morphology 
compared to regular wheat starch, a smaller pro-
portion of (smaller) B-type granules, and a higher 
degree of crystallinity (Zhang et al. 2013). 

Regular native starches form a solid gel after 
gelatinization. The follow-up retrogradation is a 

crystallization process typical for the reassociation 
of solubilized starch polymers. Amylose retrogrades 
in these gels within a day of ageing. Waxy starch 
(without amylose) is therefore applied in food 
technologies (e.g. confectionary or bakery) where 
it minimises retrogradation. On the other hand, 
amylopectin forms very weak gels that break down 
on shear (Murray and Phisarnchananan 2014). 

Starch can be debranched at 1, 6 linkages by 
debranching enzymes (e.g. isoamylase and pullula-
nase) under specific conditions. For waxy starches, 
only short linear chains are released in this process, 
and therefore these chains have a relatively nar-
rower molecular weight (MW) distribution which 
is important for the preparation of nanoparticles. 
They may be used as fillers and reinforcing agents 
in polymer composites or carriers for drug deliv-
ery, barrier coating materials and stabilisers in 
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oil-in-water emulsions. Waxy starch can also be 
applied as a raw material in further technologies, 
as a part of biocomposites and other polymers or 
co-polymers, for pharmaceutical uses, and in many 
others (Šárka and Dvořáček 2017). 

Biosynthesis of adenosine diphosphoglucose

Starch biosynthesis proceeds in leaves as well as 
in heterotrophic plant tissues. A part of the pho-
tosynthetically fixed carbon is retained within the 
chloroplasts during the day to synthesize starch, 
which is then remobilized during the night to sup-
port non-photosynthetic metabolism and growth 
by continued export of carbon to the rest of the 
plant (Bahaji et al. 2014). In tubers or seeds, starch 
serves as a longer-term carbon store (Geigenberger 
et al. 2004).

The common step of  starch biosynthesis 
(Figures 1–3) is based on the conversion of glu-
cose 6-phosphate (Glc-6-P) to glucose 1-phos-
phate (Glc-1-P) by phosphoglucomutase (PGM; 5). 
ADPglucose (ADP-Glc – adenosine diphospho-

Table 1. Numbers of enzymes

1, 1' fructose-1,6-bisphosphate aldolase 

2, 2' fructose 1,6-bisphosphatase 

3 PPi: fructose-6-P 1-phosphotransferase

4, 4' phosphoglucose isomerase (PGI) 

5, 5' phosphoglucomutase (PGM) 

6 UDP-Glc pyrophosphorylase (UGP) 

7 sucrose-phosphate-synthase 

8 sucrose phosphate phosphatase 

9 adenosine diphosphoglucose pyrophosphorylase 
(AGPase) 

10 starch synthase (SS)

12 plastidial hexokinase 

13 plastidial UGP 

14 plastidial ADP-Glc pyrophosphatase 

15 plastidial starch phosphorylase 

16 sucrose synthase (SuSy)

X and X' distinguish isoenzymes in the cytosol and the 
plastidial ones

Figure 1. Starch biosynthesis in leaves (complex 
pathways) according to Bahaji et al. (2014). 
ADP-Glc – adenosine diphosphoglucose;  
Fru-6-P – fructose 6-phosphate; FBP – fructose 
biphoshate; Glc-1-P – glucose 1-phosphate; 
Glc-6-P – glucose 6-phosphate;  GPT – 
Glc-6-P/Pi translocator; OPPP – oxidative 
pentose-phosphate pathway; Triose-Ps – triose 
phosphates; UDP-Glc – uridine diphosphate 
glucose; numbers of enzymes see Table 1
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glucose) is subsequently made from Glc-1-P and 
ATP (adenosine triphosphate) by ADPglucose 
pyrophosphorylase (AGPase – adenosine diphos-
phoglucose pyrophosphorylase; 9). ADP-Glc acts 
as the glucosyl donor for starch synthases (SS; 10) 
(Zeeman et al. 2010, Geigenberger 2011). 

In illuminated leaves, Glc-6-P is synthesised from 
the Calvin-Benson cycle intermediates via plastidic 
PGI (phosphoglucose isomerase) (4') and PGM (5'), 
while ATP is provided by the photophosphorylation 
in the thylakoid membrane (Geigenberger 2011). 
Triose-Ps (triose phosphates) produced in the 
Calvin-Benson cycle are exported to the cytosol 
where they can be channelled into the regeneration 
sequence of pentose-P pathway (OPPP – oxida-
tive pentose-phosphate pathway). This model 
supposes a plastidial sucrose as a precursor for 
starch biosynthesis. Additionally, a tight intercon-
nection of sucrose and starch metabolic path-
ways is regulated by means of cytosolic ADP-Glc 
producing enzymes such as sucrose synthase (16; 
acting when cytosolic sucrose transiently accu-
mulates during illumination), and by an ADP-Glc 
translocator located at the chloroplast envelope 
membranes, and both AGPase (9) and pPGM (plas-
tidial phosphoglucomutase) (5') play an important 
role in the scavenging of glucose units derived 
from starch breakdown occurring during starch 
biosynthesis (Figure 1).

There are different pathways for the sucrose-
starch conversion process in heterotrophic organs 
of dicotyledonous and monocotyledonous plants. 

In non-photosynthetic tissues such as potato tu-
bers (Figure 2), incoming sucrose is transferred 
by series of cytosolic reactions to the Glc-6-P, 
which is imported into amyloplast using antiport 
with inorganic phosphate (Pi) by GPT (Glc-6-P/Pi 
translocator) (Kammerer et al. 1998) and subse-
quently converted to Glc-1-P via plastidial PGM 
(5'). The second substrate of AGPase (9), ATP, is 
obtained by mitochondrial respiration and im-
ported into the plastid via a membrane ATP/ADP 
exchanger (Tjaden et al. 1998, Bahaji et al. 2014). 
The enzymes pPGM (5') and AGPase (9) located 
in the amyloplast further play an important role in 
the scavenging of the glucose units derived from 
a starch breakdown.

In contrast, AGPase (9) in cereal seed endosperm 
is mainly located in the cytosol (Figure 3). Recent 
transport studies confirmed that this enzyme ex-
changes ADP-Glc by antiport with ADP (Bowsher 
et al. 2007, Kirchberger et al. 2007). The starch 
biosynthesis further implies the additional path-
ways involving UDP-Glc (uridine diphosphate 
glucose) produced by SuSy (sucrose synthase) 
(16) and cytosolic hexose-6-P derived from the 
action of UGP (UDP-Glc pyrophosphorylase) (6) 
on UDP-Glc.

Biosynthesis of amylopectin

At least six classes of SSs have been recognised 
in seed plants including soluble SS1, SS2, SS3, SS4 

Figure 2. Basic mechanism of starch bio-
synthesis in the heterotrophic organs of 
Dicotyledons (e.g. potato) according to Bahaji 
et al. (2014). ADP-Glc – adenosine diphos-
phoglucose; ATP – adenosine triphosphate; 
Glc-1-P – glucose 1-phosphate; Glc-6-P – 
glucose 6-phosphate; UDP-Glc – uridine 
diphosphate glucose; numbers of enzymes 
see Table 1
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and SS5, and granule bound SS (GBSS – granule 
bound starch synthase), till now (Yan et al. 2009, 
Liu et al. 2015). Starch synthase SS1 catalyses the 
synthesis of amylopectin chains with the degree 
of polymerization (DP) of approximately 6–7, to 
form chains of DP 8–12. SS2 catalyses the syn-
thesis of chains of DP 6–10 to DP 12–25 (Chen et 
al. 2014). SS3 catalyses the synthesis of chains of 
DP 25–35 or greater. SS4 controls the initiation 
of starch granules (Roldán et al. 2007, Szydlowski 
et al. 2009). GBSS is an enzyme responsible for 
synthesis of the extra-long chain fraction of amy-
lopectin (Wattebled et al. 2002, Ral et al. 2006, 
Ahuja et al. 2014). A novel SS isoform (SS5) has 
been recently identified by Liu et al. (2015) in 
maize seed. The action and concentration of the 
synthases in cereals depends on the day post-
anthesis (Chen et al. 2014).

The starch-branching enzyme isoforms (SBEI 
and SBEII) and two groups of debranching en-

zymes (SDBEs) are involved in the amylopectin 
biosynthesis. The SBEI plays an important role in 
the synthesis of B1-, B2-, and B3-chains (Figure 4). 
SBEII-b performs a distinct function in the for-
mation of A-chains. Whereas SBEI and SBEII 
generate 1, 6 linkages that form the branched 
structure of amylopectin, SDBEs presented in 
plants in two types: isoamylase and pullulanase 
efficiently hydrolyse 1, 6 linkages in amylopectin. 
They remove unnecessary or erroneous branches. 
Simultaneously, SDBEs are essential players in 
the formation of crystalline amylopectin (Chen 
et al. 2014).

Elimination of the GBSS activity: molecular 
genetic approach

GBSS (waxy protein) in two forms (GBSS-I and 
GBSS-II) is the only starch synthase isoform re-

Figure 3. Basic mechanism of starch biosyn-
thesis in the heterotrophic organs of Mono-
cotyledons (cereals) according to Bahaji et 
al. (2014). ADP-Glc – adenosine diphos-
phoglucose; ATP – adenosine triphosphate; 
Glc-1-P – glucose 1-phosphate; UDP-Glc – 
uridine diphosphate glucose; numbers of 
enzymes see Table 1

Figure 4. Core enzymes of the final step of 
starch biosynthesis. SS – starch synthase; 
SDBE – starch-debranching enzyme
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quired for amylose synthesis. According to Wang et 
al. (2014) GBSS-I is mainly responsible for amylose 
synthesis in cereal endosperm, whereas the GBSS-II 
is responsible for amylose synthesis in leaves and 
other non-storage tissues which accumulate transient 
starch. Amylose is synthesized within the amylo-
pectin matrix (Tatge et al. 1999, Denyer et al. 2001). 
GBSS is encoded by so called waxy genes situated 
at independent loci; plants lacking the waxy gene 
produce starch without amylose, known as waxy 
starch (Sano 1984, Shapter et al. 2009).

According to Biselli et al. (2014) the waxy gene 
in rice is located on chromosome 6 and consists 
of 13 exons and 12 introns. A single nucleotide 
polymorphism (AGGT or AGTT) at the first nu-
cleotide of the first exon-intron junction of the 
waxy gene affects the expression of waxy gene. If 
the first nucleotide of intron 1 is G (AGGT), the 
intron is excised for external splicing normally 
and the expression level of the mature mRNA 
is high, resulting in high levels of amylose and 
thus, non-waxy starch. On the other hand, if the 
first nucleotide is T (AGTT), the intron is not 
spliced normally and gene expression is reduced, 
resulting in low amylose content and waxy starch 
(Pusadee et al. 2014). Rohde et al. (1988) found 
that barley waxy gene consists of 12 exons and 
11 introns. Chao et al. (1989) found that wheat 
endosperm has three isoforms of GBSSI encoded 
by the Waxy (Wx) loci, Wx-A1, Wx-B1, Wx-D1, 
located on chromosomes 7AS, 4AL (translocated 
from 7BS), and 7DS, respectively. Yamamori (2009) 
and Yamamori and Yamamoto (2011) developed 
wheat lines with amylose content of 1–20%, which 
carried two null waxy alleles and one allele with 
reduced activity or expression.

Waxy genes were identified in many species, 
including maize (Shure et al. 1983), rice (Wang 
et al. 1995), cassava (Ceballos et al. 2007), wheat 
(Nakamura et al. 1995, Hung et al. 2007), po-
tato (Hovenkamp-Hermelink et al. 1987), and 
Arabidopsis (Ovecka et al. 2012, Ortiz-Marchena 
et al. 2014). Several properties distinguish GBSS 
from other starch synthase isoforms. Firstly, it is 
tightly bound to starch granules and is the most 
abundant protein there (Grimaud et al. 2008). 
Secondly, unbound GBSS protein appears to be 
unstable, since it is not detectable in soluble protein 
fractions of leaves, even in the absence of starch 
granules (e.g., at the end of the night, when the 
starch has been fully degraded) (Smith et al. 2004). 

Finally, unlike soluble starch synthase isoforms such 
as SS2, GBSS elongates malto-oligosaccharides 
processively and with higher efficiency (Denyer 
et al. 1999). 

Recent research has further revealed another 
protein responsible for elongating amylose poly-
mers in the Arabidopsis model plants: protein 
targeting to starch (PTST), which possesses an 
N-terminal coiled coil domain and a C-terminal 
carbohydrate binding module (CBM – carbohydrate 
binding module). Arabidopsis mutants bearing a 
functionless PTST synthesised similar amylose-
free starch as in the case of the mutation in the 
enzyme GBSS. It was further revealed that GBSS 
non-covalently interacts with PTST via a coiled 
coil domain. Furthermore, the CBM domain of 
PTST, which mediates its interaction with starch 
granules, is also required for correct GBSS locali-
sation. Thus, PTST represents a promising new 
gene target for the biotechnological modification 
of starch composition, as it is exclusively involved 
in amylose synthesis (Seung et al. 2015).

Although waxy alleles have a negative effect on 
the productivity and disease resistance several 
modern waxy wheat cultivars have already been 
registered in China (Zhang et al. 2013), France 
(http://www.secobra.com/en/wheat.aspx, 20.8. 
2015) and USA (Graybosch et al. 2014).

Conclusion

Waxy starch (without amylose) is applied in food 
technologies (e.g. confectionary or bakery) where 
it minimises retrogradation and consequently ag-
ing of the products. Besides, when amylopectin 
is debranched at 1, 6 linkages by debranching 
enzymes (e.g. isoamylase and pullulanase) under 
specific conditions, only short linear chains having 
a relatively narrow MW distribution are released, 
and they may be applied for the preparation of 
nanoparticles.

Detailed studies focused on the pathway of starch 
biosynthesis and signals and mechanisms regulat-
ing starch synthesis in plants have been published 
by a number of authors. The precursor of starch is 
ADP-Glc which originates in different plants and 
tissues by different ways briefly described here.

Elongation and branching of amylopectin during 
its biosynthesis is a complex process and requires 
an array of enzymes viz. starch synthases, starch 
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branching enzymes and debranching enzymes. 
However synthesis of amylose not present in waxy 
starches is brought about solely by the enzyme 
granule-bound starch synthase I or waxy protein.
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