
Paddy rice is one of the most important cereals 
and is cultivated worldwide (Huang et al. 2012). 
Currently, farmers tend to increase the dose of 
nitrogen (N) fertilization to improve paddy rice 
yield. Much N fertilizer is however wasted, resulting 
in severe environmental pollution. Passive remote 
sensing is the main technology for monitoring of 
N levels and has been studied in detail by investi-
gators in the past decade (Wu et al. 2008, Tian et 
al. 2014). However, passive remote sensing cannot 
be operated all time. Therefore, active remote 
sensing was then proposed and have been widely 
utilized to monitor biochemical concentration of 

crops. The hyperspectral LiDAR was proposed 
by Gong et al. (2012). This active technology can 
measure both the spectral and spatial information 
of vegetation with high accuracy. Thus, it can be 
used to monitor the leaf biochemical content of 
crops by numerous researchers (Li et al. 2014).

In addition, Hoge and Swift (1981) found that 
chlorophyll in leaf can ray all or part of its absorbed 
energy at longer wavelengths after exposed to pho-
tons of a certain wavelength that was well known 
as fluorescence. Fluorescence technology has a 
potential for the pre-visual detection of nutrient 
stress (Pedrós et al. 2008). Then, Chappelle et al. 
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lowing research.

Keywords: fluorescence characteristics; remote sensing; nutrient stress; Oryza sativa; machine learning

Supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan), 
Grant No. CUG170661, and by the National Natural Science Foundation of China, Grant No. 41571370.

396

Vol. 63, 2017, No. 9: 396–401	 Plant Soil Environ. 

doi: 10.17221/460/2017-PSE



(1984b) investigated the remote monitoring of spe-
cies differentiation and plant nutrient deficiency by 
using the laser-induced fluorescence (LIF) spectra of 
a green plant. They found that nutrient deficiency can 
affect the LIF spectra of corn and that different types 
of plant displayed different fluorescence spectral 
shapes (Chappelle et al. 1984a, 1985). Lichtenthaler 
and Buschmann (1987) analysed the fluorescence 
spectra of green leaves and pointed that red and 
far-red fluorescence peaks were closely related to 
the chlorophyll content in leaf.

Many researches were conducted on the effect 
of leaf N concentration on fluorescence spectra. 
They utilized the active LIF combined with pas-
sive reflectance measurements to analyse different 
N fertilization rates in field corn (McMurtrey et 
al. 1994, Yang et al. 2017). They found that leaf 
chlorophyll concentration was increased with 
increasing N fertilization rates, resulting in the 
change of the fluorescence spectra. Subhash and 
Mohanan (1994) analysed chlorophyll fluorescence 
characteristics (FLCs) that can be used as nutrient 
stress indicator in Oryza sativa, and suggested 
that far-red fluorescence peak had a great poten-
tial for remote sensing stress effects in plants. 
The differences in LIF characteristics of leaves 
between non-stressed and stressed plants were 
discussed in detail. Their experimental results 
showed that the fluorescence ratio between the 
red and far-red fluorescence peak was a sensi-
tive and suitable stress indicator (Schweiger et al. 
1996). In subsequent investigations, LIF technol-
ogy was utilized to monitor the environment’s 
(e.g., light stress, high temperature and drought 
(Živčák et al. 2008) influence on soybean, wheat 
and rice. In addition, Yang et al. (2015) analysed 
the correlation between fluorescence peaks and 
leaf N content in paddy rice. Thus, LIF is a help-
ful method in monitoring of the nutrient stress of 
plants. However, those studies focused only on the 
effect of leaf nutrient content on the FLCs in crops. 
The investigations of the correlation between the 

different N fertilization levels and FLCs, as well 
as the evaluation of different N fertilization levels 
using LIF technology combined with multivariate 
analysis have still been sparse.

Thus, the main objective of this research is to 
quantitatively analyse the correlation between 
different N fertilization levels and FLCs (F735, 
F685, F460 denote the fluorescence intensity at 
735, 685 and 460 nm, respectively), as well as to 
evaluate different N fertilization levels in two-year 
experiments and with different rice cultivars based 
on the FLCs with the help of back-propagation 
neutral network (BPNN) in paddy rice.

MATERIAL AND METHODS

Treatments. The experiment was conducted in 
Wuhan, Hubei province, China. The experimental 
area has a typical subtropical monsoon climate 
with abundant rainfall; the area is sunny and hot 
during summer and cold during winter. Rainfall 
per year exceeds 1400 mm and sunshine duration 
per year surpasses 1500 h.

Yongyou 4949 of japonica and Yangliangyou 
6 cultivar indica were planted on 27 April, 2014 
and 27 May, 2015, respectively. During the entire 
growth period, six and four different doses of N 
fertilization of urea were utilized in 2014 and 2015, 
respectively (Table 1). The most optimal doses of 
N fertilization (urea) were 270 kg/ha and 180 kg/ha 
for 2014 and 2015 experimental areas according 
to the advice of the local farm extension service. 
N fertilization was divided into four splits: 30% at 
seeding, 20% at tillering, 25% at shooting and 25% 
at booting for 2014. N fertilization was divided 
into three splits: 60% at seeding, 20% at tillering 
and 20% at shooting for 2015. The experimental 
field has a block design with three replications per 
treatment with the same cultivation conditions. 
The leaves of paddy rice were gathered on 15 July, 
2014 and 26 July, 2015.

Table 1. Field paddy rice dose of nitrogen (N) fertilization (urea) for each treatment in 2014 and 2015

2014 2015
L0 L1 L2 L3 L4 L5 T0 T1 T2 T3

N fertilization (kg/ha) 0 189 229.5 270 310.5 351 0 120 180 240

L0 – no nitrogen; L1 – 189, L2 – 229.5, L3 – 270, L4 – 310.5, L5 – 351 kg N/ha; T0 – no nitrogen; T1 – 120, T2 – 180, 
T3 – 240 N/ha
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LIF system. The LIF measurement system consists 
of three main parts. The excitation source is 420 nm. 
Its output power is 1.6 mJ and the duration of pulse 
is 5 ns. The excited fluorescence signal was gathered 
by a telescope and then transmitted into a single-
mode optical fiber with a diameter of 200 µm. 
The fluorescence signal entered the spectrometer 
and was recorded by an ICCD camera. A personal 
computer was used to store and process these 
spectral data. In addition, a 405 nm long-pass 
filter (LOPF-25C-405 with the edge of 421.5 nm) 
was positioned behind the telescope to eliminate 
reflected light from the laser.

Back propagation neural network. BPNN creates 
the relation between its units through a series of 
trials, with respect to multiple tasks, and is trained 
by repeatedly giving a series of input and output 

pattern sets to the neural network. When the mean 
squared error of the training set gets a minimum, 
the weights are fixed and the model is considered 
complete. A simple structure diagram of three-layer 
BPNN is shown in Figure 1. This simple network 
architecture included three parts: one output layer, 
one hidden layer and one input layer.

RESULTS AND DISCUSSIONS

N fertilization levels and fluorescence ratio. For 
each experimental field, the samples of paddy rice 
leaves were destructively sampled by randomly 
collecting six leaves at three different sites. All 
samples were the second fully expanded leaves from 
the top. These samples were sealed in freezer bags, 
kept in an ice tank and immediately transported 
to the laboratory for FLCs measurements (Yang 
et al. 2016). After that, all samples were immedi-
ately sent to the Wuhan Academy of Agricultural 
Science and Technology for measurement of leaf 
N content. The Kjeldahl method was utilized to 
determine the leaf total N content of paddy rice 
in this investigation (Yao et al. 2010). The mean 
values of leaf N content of each N fertilization 
level are shown in Figure 2; the black error bar 
denotes the standard deviation.

The leaf total N content increased with the 
increase of the dose of N fertilization in 2014 
(Figure 2a) and 2015 (Figure 2b). The differences 
between no nitrogen (L0 and T0) and other dif-
ferent treatments in leaf N content were more 

Figure 1.  Scheme of a simple three-layer back- 
propagation neural network. Pi – input variables; 
Ti – target outputs

Figure 2. The nitrogen (N) content of rice leaf with the different N fertilization levels at different years: (a) 2014; 
(b) 2015. The black error bar represents the standard deviation of mean values. L0 – no nitrogen; L1 – 189, 
L2 – 229.5, L3 – 270, L4 – 310.5, L5 – 351 kg N/ha; T0 – no nitrogen; T1 – 120, T2 – 180, T3 – 240 N/ha
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obvious compared with the differences among 
different N fertilization levels. In addition, Figure 2 
showed a positive correlation between different N 
fertilization levels and leaf total N content. Based 
on previous researches (Hák et al. 1990), FLCs 
(F735/F460, F685/F460, and F735/F685) of sam-
ples of different N fertilization levels, which can 
be used to evaluate N status, were then measured 
by using the LIF system. The correlation between 
the mean values of these FLCs and the different 
N fertilization levels was achieved and shown in 
Figure 3. The black error bar denotes the standard 
deviation of mean values of the FLCs.

Figure 3 shows the changes of FLCs with N fer-
tilization rate. The experimental results denoted 
that the FLCs increased with the increase of N 
fertilization rate. It can be found that the values 
of the FLCs (F735/F460, F685/F460) of the zero 
N fertilization levels (L0 and T0) were lower than 
other N fertilization levels. The reason is that 
its N content was lower than other treatments 
(Figure 1). In addition, compared with F735/F685, 
the fluorescence ratio of F735/F460 and F685/
F460 both exhibited significant differences among 
different N fertilization levels in 2014 and 2015. 
McMurtrey et al. (1994) and Subhash and Mohanan 
(1994) achieved the same variation tendency of 
fluorescence characteristics for different dose 
of N fertilization. Therefore, these fluorescence 
ratios can be utilized to assess different N status 
in the further study.

Identification of N status. In this study, BPNN 
algorithm was used to verify the potential of the 
three FLCs for the identification of different doses 
of N fertilization. A simple three-layer BPNN 
was utilized. The input, hidden and output layers 
included three, five and one neuron, respectively. 
The Levenberg-Marquardt algorithm was used as 
a training function. About 63% of the fluorescence 
data were used to train BPNN model and the re-
maining 37% were applied to validate the model. 
The results of testing are listed in the confusion 
matrix for 2014 and 2015 (Tables 2 and 3).

The control treatment (L0 and T0) can be com-
pletely identified (the identification rate can reach 
up to 100%) for producers and users, and the over-

Figure 3. Mean values of normalized fluorescence intensity changing with different doses of nitrogen (N) fertilizer 
at different years: (a) 2014; (b) 2015. The black error bar denotes the standard deviation of the Leaf fluorescence 
characteristics. L0 – no nitrogen; L1 – 189, L2 – 229.5, L3 – 270, L4 – 310.5, L5 – 351 kg N/ha; T0 – no nitrogen; 
T1 – 120, T2 – 180, T3 – 240 N/ha
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Table 2. The confusion matrix of identification accuracy 
of the nitrogen (N) fertilization levels for 2014

Predicted
L0 L1 L2 L3 L4 L5 producer (%)

True

L0 20 0 0 0 0 0 100
L1 0 18 1 1 0 0 90
L2 0 2 16 1 1 0 80
L3 0 1 1 17 1 0 85
L4 0 0 0 1 18 1 90
L5 0 0 0 0 1 19 95

user (%) 100 85.71 88.89 85 85.71 95
Overall accuracy: 90%

L0 – no nitrogen; L1 – 189, L2 – 229.5, L3 – 270, L4 – 310.5, 
L5 – 351 kg N/ha
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fertilization or low-fertilization can be also well 
identified. Experimental and numerical results 
demonstrated that the total identification rates 
of 2014 (n = 120) and 2015 (n = 80) were 90% 
and 92.5%, respectively. Thus, fluorescence ratios 
(F685/F460, F735/F460, and F735/F685) with the 
help of BPNN can be effectively applied in the 
evaluation of N status and provide farmers with the 
direction of the decision-making of N fertilization 
strategies and guide them to rectify fast the lack 
of N fertilization. In addition, this study can also 
provide guidance for the selection of fluorescence 
Lidar channel in the following research.

In this study, the potential of the three FLCs 
combined with BPNN for the evaluation of dif-
ferent N fertilization levels was demonstrated. 
However, more investigations on the effect of 
different doses of N fertilization on FLCs are still 
needed to be further conducted. For the BPNN, 
the optimal network architecture and training ap-
proaches have not been discussed and established. 
The results obtained using the BPNN method 
were trained on the basis of our experiences in 
analysing restricted data combinations. Ideally, the 
best results should be compared by changing the 
numbers of hidden neurons and network architec-
tures. Thus, further studies should be conducted 
on the effectiveness of the BPNN for identifying 
the dose of N fertilization-based LIF technology. 
Moreover, although different N treatments were 
set, different paddy rice growth seasons and other 
crops should be considered to obtain a more solid 
conclusion in future studies.

In summary, LIF combined with BPNN exhibited 
the potential for evaluating N fertilization levels 
in paddy rice. The numerical results demonstrated 
that the leaf total N content of paddy rice increased 

along with the dose of N fertilization, resulting in 
different FLCs. The mean values of the fluorescence 
ratios (F685/F460, F735/F460 and F735/F685) of 
different N fertilization levels displayed significant 
differences. The correlation between the fluores-
cence ratio and different doses of N fertilization 
was established for 2014 and 2015 fluorescence 
data. Then, BPNN was used to verify the ability of 
fluorescence ratio for identifying different leaf N 
status, and experimental results demonstrated that 
the overall identification accuracies of 2014 and 
2015 were 90% and 92.5%, respectively. Therefore, 
LIF with the help of multivariate analysis can be 
used as a helpful tool for the estimation of N sta-
tus and offer direction for the decision-making 
of farmers on N fertilizer strategies in the future. 
In addition, this research can also provide guid-
ance for the selection of LIF Lidar channels in the 
following research. However, in order to obtain 
a solid conclusion, more investigations are still 
needed to be conducted on the effect of different 
N status on FLCs by using other cultivars of crops.
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