
Soil organic carbon (SOC) lateral transport 
is a pivotal process of SOC loss, which plays a 
significant role in SOC sequestration (Lal 2005, 
Pospíšilová et al. 2011) and water environment 
quality (Krasner et al. 2009). Fertilization, es-
pecially crop straw application, is an effective 
practice that affects the quantity and quality of 
SOC and influences hydrologic characteristics, 
thereby having an impact on the process of SOC 
lateral transport.

Over the past decades, many studies have con-
firmed that crop straw combined with mineral 

fertilizers is an effective agronomic way to sustain 
grain yield and reduce runoff losses (Kaewpradit 
et al. 2009). Leaching is not a crucial problem 
for SOC only, but leaching of nutrients, mainly 
nitrates, has negative consequences for environ-
ment, too (Elbl et al. 2014, Plošek et al. 2017). 
Fertilization, especially for crop straw addition, 
has a substantial effect on soil physicochemical 
property and hydrologic characteristics, thereby 
influencing SOC losses via runoff and leaching. 
For instance, Prosdocimi et al. (2016) confirmed 
that crop straw mulching is effective in decreas-
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ing sediment yield and surface runoff discharge, 
which is achieved immediately after crop straw 
application. Similarly, Rahma et al. (2017) reported 
that crop straw mulched in the topsoil reduced the 
amount of soil erosion from hillslope croplands 
under extreme rainfall events. Shi and Schulin 
(2018) reported that crop straw application resulted 
in a decrease in organic carbon (C) loss through 
an artificial rainfall experiment. In general, most 
of these studies, however, only considered the ef-
fects of crop straw additions or mulching on SOC 
transport in isolated situations (e.g., through soil 
erosion alone). Thus, an accurate amount of SOC 
lateral transport caused by surface runoff, leaching, 
and soil erosion under crop straw application has 
not been reported. The magnitude and dominant 
hydrological route for SOC transport under crop 
straw applications remain uncertain.

The hillslope croplands of Regosols in the Sichuan 
Basin of China are distributed widely and have 
been extensively degraded by severe soil erosion. 
Regosols, which are characterized by thin soil 
layers, are easily saturated during precipitation. 
Leaching is a major phenomenon that occurs pri-
marily during the rainy season (Zhu et al. 2009). 
Hence, surface runoff, leaching, and soil erosion 
occur simultaneously on hillslope croplands during 
the rainy season. The present study simultaneously 
monitored SOC lateral transport losses caused by 
surface runoff, leaching, and soil erosion based on 
a field lysimeter experiment from 2010 to 2012. 
The specific objectives of this study were to (1) 
quantify the organic C loss fluxes from surface 
runoff, leaching, and soil erosion; (2) evaluate the 
effect of crop straw applications on SOC lateral 
transport flux; (3) identify the dominant route of 
SOC lateral transport under crop straw application.

MATERIAL AND METHODS

Site and soil description. The experiment was 
set up in the central Sichuan Basin of China, which 
is located at 31°16'N, 105°28'E, and it has a subtropi-
cal climate. The amounts of annual precipitation 
from 2010 to 2012 were 892, 1061 and 1080 mm, 
respectively. Based on the World Reference Base 
for Soil Resources (IUSS Working Group WRB 
2006), the tested soil is classified as a Regosol. 
The soil which was developed from purplish shale 
has the typical ‘binary structure of soil-bedrock’. 

The specific soil used is a silty loam soil with 
a pH of 8.3, bulk density of 1.3 g/cm3, organic 
carbon content of 5.1 g/kg, total nitrogen content of 
0.6 g/kg, total phosphorus content of 0.6 g/kg, 
field capacity of 27.3%, and saturated hydraulic 
conductivity of 16.8 mm/h (Zhu et al. 2009).

Experimental setup. According to the Handbook 
of Water and Soil Conservation Monitoring in 
Runoff Plots and Small Watersheds (Ministry of 
Water Resources, PRC 2015), the field plots were 
constructed as free-draining lysimeters. The ex-
perimental lysimeter plots (size: 8 × 4 m2, slope: 
7%), allowed for the simultaneous measurement 
of surface runoff, leaching, and soil erosion. These 
free-draining lysimeters were placed by excavat-
ing the soil to the bedrock and constructed the 
lysimeters for hydrological isolation in 2002 (Zhu et 
al. 2009). Each plot was hydrologically isolated by 
walls filled with cement that reached the bedrock 
and extended to a depth of at least 0.6 m to prevent 
lateral seepage from adjacent plots according to 
Patent No. ZL2007100640686. 

The plots were laid in the experiment in a ran-
domized block design with three replicates. One 
control and two fertilizer treatments were used: no 
fertilizer (CK); crop straw addition (40% of applied 
nitrogen, RSD), and crop residue (40% of applied 
nitrogen) combined with mineral nitrogen (60% 
of applied nitrogen; RSDNPK). All the crop straws 
were collected from nearby croplands of local 
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Figure 1. Average yields of wheat and maize under 
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farmers. The experimental plots were subjected to 
conventional winter wheat (Triticum aestivum L.) 
cultivation from late October to May of the fol-
lowing year, followed by a summer maize (Zea 
mays L.) rotation from May through September. 
Wheat was planted in late October and harvested 
in the middle of May during the following year. 
The maize crop was planted in early June and 
harvested in late September. RSDNPK treatments 
in this study received equal nitrogen amounts 

of 280 kg N/ha/year (in terms of mass, that is, 
130 kg N/ha in the wheat season and 150 kg N/ha 
in the maize season). In the RSD and RSDNPK 
treatments, the wheat or maize growing seasons 
were applied at rates of 6000 and 7000 kg/ha maize 
or wheat straw, respectively. All the straws were 
cut into small pieces approximately 5 cm long, 
then returning to soil. RSDNPK treatment received 
ammonium bicarbonate (78 kg N/ha in the wheat 
season and 90 kg N/ha in the maize season), triple 
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Figure 2. Seasonal patterns of (a) rainfall; (b) discharges in surface runoff; (c) leaching and (d) soil erosion un-
der different fertilization treatments from 2010 to 2012. Vertical bars indicate the standard deviations of three 
different replicates. CK – no fertilizer; RSD – crop straw addition; RSDNPK – crop straw addition combined 
with mineral fertilizers
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superphosphate (32 kg P/ha equivalent in the wheat 
or maize season) and potassium chloride (30 kg 
K/ha equivalent in the wheat or maize season) 
as basal fertilization. All of the mineral fertiliz-
ers and crop straw were applied by hand as basal 
fertilization on the same day as seeding.

Runoff discharge measurement and water 
sampling. Surface runoff and leaching water were 
collected by buckets. Surface runoff and leaching 
water samples were collected separately from the 
different buckets. Polyethylene bottles (500 mL) 
were used to collect water samples to determine 
the dissolved organic carbon (DOC) concentration 
after the water levels were measured. To determine 
the soil erosion rate, the water and sediment in 
the buckets were completely mixed and a 10 L 
polyethylene bottle was used to collect a runoff 
sample. After allowing the samples to settle for 

Figure 3. Seasonal patterns of dissolved organic carbon (DOC) concentration and loss flux via surface runoff 
for all treatments from 2010 to 2012. Vertical bars indicate the standard deviations of three different replicates. 
CK – no fertilizer; RSD – crop straw addition; RSDNPK – crop straw addition combined with mineral fertilizers

48 h in the collectors, the samples were treated 
with an Al K (SO4)2 × 12 H2O solution to promote 
coagulation. When the sediment settled, the excess 
water was decanted and dried and the remaining 
soil was weighed at 105°C (Polyakov and Lal 2008).

Analytical methods. The water samples of the 
surface runoff or leaching were passed through 
0.45 µm filter membranes to analyze the DOC 
concentrations using AA3-Auto-analyzer (Bran + 
Lubbe, Norderstedt, Germany). The organic car-
bon (OC) content in the sediment was measured 
using the wet combustion method in 133 mmol/L 
K2Cr2O7 at 180°C for 5 min, followed by titration 
of the digests with iron (II) sulfate (FeSO4; Blair 
et al. 1995). All of the material remaining on the 
screen was washed into a dry dish, oven-dried 
at 60°C for 48 h, and ground to determine the C 
content using the SOC analysis method.
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Data analysis. DOC loss flux during an indi-
vidual flow (Qi) produced from a rainfall event 
was calculated as follows:

Qi = Ci × qi

Where: Qi – DOC loss flux in surface runoff or leaching 
(mg/m2); Ci – DOC concentration in surface runoff or 
leaching water (mg/L); qi – runoff depth per unit (mm).

The OC loss flux in the sediments during an 
individual flow (QSi) was calculated as follows:

QSi = Csi × qsi

Where: QSi – OC loss flux (mg/m2); Csi – OC content (g/kg); 
qsi – sediment loss flux (g/m2).

The annual cumulative DOC and OC loss fluxes 
were calculated as follows:

 
                                                        (3)

Where: Q – annual cumulative loss flux (mg/m2), i = 1 ~ n 
(n – number of runoff events in a given year).

The statistical analyses and graphs preparing 
were used the SPSS 19.0 (SPSS, Inc., USA) and 
Sigma plot 10.0 software (Systat Software, Inc., 
Chicago, USA) packages.

RESULTS AND DISCUSSION

Crop yield, rainfall, runoff discharge and sedi-
ment flux. Average annual yields for wheat and 
maize under CK treatment were 1.2 ± 0.4 and 
2.6 ± 0.4 t/ha. The corresponding yields under 
RSD and RSDNPK treatments were significantly 
increased by 25.0, 216.7, 100.0 and 196.2%, respec-
tively, compared with CK treatment (Figure 1). 
There were 33 rainfall events observed, which were 
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Figure 4. Seasonal patterns of dissolved organic carbon (DOC) concentration and loss flux via leaching for all 
the treatments from 2010 to 2012. Vertical bars indicate the standard deviations of three different replicates. 
CK – no fertilizer; RSD – crop straw addition; RSDNPK – crop straw addition combined with mineral fertilizers
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ranged from 10.5 to 177.1 mm per event (Figure 2). 
The average annual cumulative surface runoff 
discharges for the CK, RSD and RSDNPK treat-
ments were 139.5 ± 18.3, 29.3 ± 6.6, and 27.9 ± 
4.3 mm, respectively. Average annual cumulative 
values of sediment fluxes were 549.9 ± 72.6, 32.0 ± 
6.3, 17.1 ± 3.2 g/m2, respectively. Compared with 
CK treatment, sediment yield under RSD and 
RSDNPK treatments were sharply decreased by 
1618.4% and 2215.8%. These findings are consist-
ent with the results of Won et al. (2012). Because 
the pores in the soil surface under crop residue 
mulching are protected from clogging by small 
clumps of soil and organic particles that detach 
from the soil matrix by raindrop impact (Wei et 
al. 2017). Moreover, crop straw application also 
can effectively increase crop biomass, plant cov-
erage and water consumption, thereby decreased 

surface runoff and sediment. Discharges caused by 
leaching were increased by 23.7% and 3.9% under 
RSD and RSDNPK treatments compared with CK 
treatment, which was due to crop straw enhancing 
infiltration (Peng et al. 2016).

DOC loss caused by surface runoff and leach-
ing. Average annual cumulative DOC loss fluxes 
caused by surface runoff in CK, RSD and RSDNPK 
treatments were 311.8 ± 94.5, 77.4 ± 32.0, and 79.1 ± 
25.7 mg/m2, respectively (Figure 3). Compared with 
CK treatment (2.15 ± 0.21 mg/L), the mean values of 
DOC leaching concentrations in RSD and RSDNPK 
treatments increased significantly (P < 0.05) 
by 71.7% and 100.5% (Figure 4). DOC leaching 
is a complicated biochemical process which is 
caused by adsorption and desorption of soil DOC 
(Kalbitz et al. 2000). Soil DOC mainly originates 
from plant litter or root exudates, soil humus, and 
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Figure 5. Seasonal patterns of organic carbon (OC) content and loss fluxes caused by soil erosion for all treat-
ments from 2010 to 2012. Vertical bars indicate the standard deviations of three different replicates. CK – no 
fertilizer; RSD – crop straw addition; RSDNPK – crop straw addition combined with mineral fertilizers
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various exogenous organic matter inputs, which is 
greatly enhanced by crop straw application (Gong 
et al. 2009, Torma et al. 2018). Consequently, the 
DOC concentration in the leakage water for the 
crop straw application was significantly greater in 
contrast to no fertilizers application. Additionally, 
the lowest cumulative DOC leaching loss was found 
in CK treatment (660.4 ± 118.3 mg/m2) whereas 
the highest was observed in the RSD treatment 
(1540.4 ± 415.2 mg/m2). This value is similar to 
the results (1.3 g/m2/year) under continuous rice 
cropping observed by He et al. (2017), whereas 
was much smaller than the loss of 3.7–51.1 g/m2/
year that Said-Pullicino et al. (2016) calculated for 
paddy-rice systems in Italy.

Organic C loss caused by soil erosion. The 
mean values of organic C (OC) content in the sedi-
ment for CK, RSD and RSDNPK treatments were 
6.30 ± 0.83, 15.43 ± 2.07, and 16.86 ± 2.34 g/kg, 
respectively (Figure 5). Compared with CK treat-
ment, the mean values of OC content in RSD and 
RSDNPK treatments increased significantly (P < 0.05) 
by 144.9% and 167.6%. Because soil erosion dis-
turbs topsoil and preferentially removes SOC from 
upslope sites and sediments that primarily contain 
semistable or stable SOC are usually rich in fine silt 
and clay-size particles (Martínez-Mena et al. 2012). 

Crop straw application enhances SOC content in 
topsoil, thereby increasing organic carbon content 
in sediment. Compared with CK treatment (4026.7 ± 
996.6 mg/m2), OC loss flux caused by sediment 
for RSD and RSDNPK treatments decreased sig-
nificantly (P < 0.05) by 638.8% and 1227.3%.

Contributions of surface runoff, leaching and 
soil erosion to SOC lateral transport. Annual 
cumulative SOC transport fluxes for CK, RSD and 
RSDNPK treatments were 4975.7 ± 1207.8, 2141.8 ± 
613.3, and 1751.3 ± 462.8 mg/m2, respectively 
(Figure 6). Soil erosion accounted for 81% of SOC 
lateral transport for CK treatment, which indi-
cated that soil erosion is the major hydrological 
route for the lateral transport of SOC (Oost et 
al. 2007, Hua et al. 2016). However, DOC leach-
ing accounted for 71% and 78% of SOC lateral 
transport under RSD and RSDNPK treatments, 
which suggested that leaching was the dominant 
hydrological route for SOC lateral transport under 
crop straw application. On the hillslopes, leach-
ing is fundamentally important for reducing SOC 
lateral transport under crop straw applications. 
Therefore, reducing DOC leaching loss is essential 
to SOC sequestration when considering optimized 
management strategies of crop straw return.
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