Impact of maize growth on N2O emission from farmland soil

Liang Wang¹, Yan Meng², Guoqing Chen¹*, Xiaoyu Liu¹, Lan Wang¹, Yuhai Chen¹

Citation: Wang L., Meng Y., Chen G.Q., Liu X.Y., Wang L., Chen Y.H. (2019): Impact of maize growth on N_2O emission from farmland soil. Plant Soil Environ., 65: 218–224.

Abstact: Crop growth is a key factor that effects nitrous oxide (N_2O) emission in farmland soil. Clarification and quantification of the impact of maize growth on N_2O emission are important to guide maize planting and patterns, which is also useful for building model to simulate N_2O emission in an agroecosystem. In this study, we carried out a three-year (2013–2015) field experiment to evaluate the contribution of maize growth on N_2O emission using a split-plot design. The factors included planting versus not planting maize, and four rates of nitrogen (N) application (0, 150, 300, 450 kg N/ha). Our results showed the impacts of maize growth on N_2O emission decreased linearly with the growth of maize from the $43^{\rm rd}$ day after sowing (y = -1.07x + 26.85, $R^2 = 0.95$). Nitrogen fertilizer application can reduce the impacts of maize growth on N_2O emission. The impact of maize growth on soil N_4^+ -N and NO_3^- -N are similar to N_2O emission, and they have a strong correlation. We concluded that maize growth on soil N_4^+ -N and NO_3^- -N largely determines the impacts of maize growth on N_2O emission.

Keywords: global warming; Zea mays L.; nitrification; fertilization; greenhouse gas; nitrogen uptake; growth dynamic

Approximately 6% of global warming caused by increases in nitrous oxide (N_2O) since the industrialized era and approximately 88% of these emissions occur from soil (Van Groenigen et al. 2010). Factors that affect agricultural soil N_2O emission are complex (Snyder et al. 2009, Akiyama et al. 2010), but crops are one of the key factors. Therefore, it is valuable to study the impact of crops growth on N_2O emission.

The effect of crop growth on N_2O emission is complex. One important factor affecting N_2O emissions is the amount of NH_4^+ -N available for nitrification and the amount NO_3^- -N available for denitrification (Kool et al. 2011). Competition between crop growth and the microbes for effective nitrogen (N) causes the reduction in farmland soil N_2O emissions. The crop uptakes a large amount of N from the soil for growth (Ciampitti and Vyn 2012), reducing the effective N content in the soil, and thus reducing soil N_2O emissions. Plaza-Bonilla et al. (2014a) found that the decrease in soil NH_4^+ -N and NO_3^- -N content directly affects the biological processes determining

 $\rm N_2O$ production. $\rm N_2O$ emission is also impacted by soil temperature, water content, range of oxygen ($\rm O_2$) concentrations, and microbial activity. All of these processes more or less affected by the growth of the crop. Jarecki et al. (2009) found that crops reduced rhizospheric $\rm O_2$ pressure through root respiration created an anaerobic environment. There are several previous studies focused on $\rm N_2O$ emissions from different crop farms and impacts of crop management practices such as tillage, irrigation, and fertilizer (Zhang et al. 2015). However, few studies have reported the effects of crop growth on $\rm N_2O$ emissions.

Maize is one of the most important food and feeds crops, with an area of 183 million hectares planted around the world (FAO 2015). The humid and hot climate in the growing season of corn is more conducive to $\rm N_2O$ emission than other crops like winter wheat (Zou et al. 2010). Many studies reported that the use of nitrogen fertilizer promoted the soil $\rm N_2O$ emission (Hoben et al. 2010, Abalos et al. 2014). Meanwhile, N fertilizer is an important factor affect-

¹Shandong Agricultural University, Tai'an, Shandong, P.R. China

²Shandong Huayu University of Technology, Dezhou, P.R. China

^{*}Corresponding author: gqchen@sdau.edu.cn

ing maize growth and development processes (Liu and Wiatrak 2012). Linear or exponential relationship between fertilizer N rates and direct N_2O emissions have been established (Kim et al. 2013). However, these relationships mostly don't isolate the effects of crops growth, so more researches are needed to quantify the impact of crop growth on N_2O emission.

In this study, we conducted a three-year field trial and greenhouse experiment to investigate soil $\rm N_2O$ emission from a field planting maize and a field without maize at different maize growth stages with four N application treatments. The aims were (1) to clarify the influence of maize growth on soil $\rm N_2O$ emission and analyze the difference of the influence at different growth stages; (2) to quantify the difference of the influence under different N application levels; (3) to understand the absorption of N by maize is one of the main reasons affecting $\rm N_2O$ emission.

MATERIAL AND METHODS

Study site. The field experiment was carried out at Dawenkou experiment stations (35°58'N, 117°3'E) of Shandong Agricultural University in Huang-Huai-Hai region from 2014–2016. The soil type is brown soil, and its physical and chemical properties (0-20 cm depth) were as follows: total N, 0.82 g/kg; available P, 27.48 mg/kg; available K, 129.70 mg/kg; available S, 43.35 mg/kg; organic carbon, 22.93 g/kg; bulk density, and 1.04 g/cm³. The climatic conditions from 2014–2016 are shown in Figure 1. The farming system in this area is wheat-maize double cropping system, the growing season of wheat is from mid-October to early June, and of maize from mid-June to early October. The traditional fertilizer application and irrigation amount in the wheat season were 225 kg N/ha and 110 mm, respectively.

Experimental design. The experiments conducted in eight districts from 2014, in $50 \times 46 \text{ m}^2$ plots. Each processing area was $10 \times 20 \text{ m}^2$ and surrounded by 2 m-wide borders. The experiment consisted of four N levels, N0 (0 kg N/ha), N150 (150 kg N/ha), N300 (300 kg N/ha), and N450 (450 kg N/ha), with each N level being employed in both maize planting and no maize planting treatments. The N treatment without planting maize is used to compare the effect of maize growth on N₂O emission under different fertilizer rates. Under the same experimental conditions, maize growth, as the only variable, is the main reason for the difference in N₂O emission between fields planted with and without maize.

Maize (cv. Zhengdan 958) planted on June 18 in 2014, 2015 and 2016 with a row spacing of 60×22.2 cm. N fertilizer (urea) was applied in each plot and was divided into two parts: 40% of the urea was applied before sowing, and 60% of urea was applied to 5-cmdeep trenches between the rows of maize plants at the twelve-leaf stage. The application rates of phosphate and potash fertilizers were 65.49 kg P/ha and 124.47 kg K/ha before sowing. After fertilization, we irrigated the maize to avoid ammonia volatile. The amount of water for each irrigation is 40 mm on June 8 and July 30, respectively. Pesticide management and plowing management (50 mm) during the maize-production season was by the conventional practices. All the management procedures were identical for each treatment.

Sample collection and measurement. N_2O emissions measured using the closed static chamber method (Huang et al. 2017). Measurements carried out about 7 days for maize after sowing and continued until harvest. The N_2O concentration in each sample analyzed using a gas chromatograph (GC-2010 plus, Shimadzu, Kyoto, Japan). The hourly

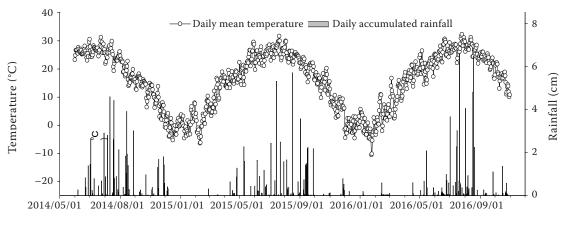


Figure 1. Daily means air temperature and precipitation during the test of 2014-2016

 $\rm N_2O$ fluxes (µg/m²/h $\rm N_2O$ -N) calculated from the slope of the linear increase in $\rm N_2O$ concentration in the sealed collection box (Rafique et al. 2011). The daily $\rm N_2O$ emissions estimated as the hourly $\rm N_2O$ emission multiplied by 24 h (Hu et al. 2013). Seasonal and annual cumulative $\rm N_2O$ emission was a total of measurement and no-measurements days. $\rm N_2O$ emission of no-measurements days estimated by linear interpolation (Mosier et al. 2006).

We collected soil samples on V3 (trilobites period); V6 (six leaf stage); V12 (twelve leaf stage); VT (tasseling stage); R3 (ratooning buds), and R6 (full ripeness period). We sampled soil from 0–20 cm. Soil $\mathrm{NH_4^+-N}$ and $\mathrm{NO_3^--N}$ content analyzed with a continuous flow analyzer (Seal Auto Analyzer III, Hamburg, Germany).

Statistical analysis. The effect of maize growth on N_2O emission estimated by comparing the difference of N_2O emissions between planting maize

field and no planting maize field calculated by the following equation:

$$NEI = (M_i - NM_i)/NM_i$$
 (1),

Where: NEI – effect of maize growth on $\rm N_2O$ emission; $\rm M_i$ – $\rm N_2O$ emission from planting maize field, measured on an $i^{\rm th}$ day from plots planting maize; NM $_{\rm i}$ – $\rm N_2O$ emission on an $i^{\rm th}$ day from plots no planting maize. NEI > 0 indicates that the maize growth increased farmland $\rm N_2O$ emissions; NEI < 0 indicates that the maize growth reduced the farmland $\rm N_2O$ emissions, and greater values of |NEI| indicate a greater effect. The effect of maize growth on soil N (SNI) calculated in the same way.

To test the differences among the treatments, the data analyzed using an analysis of ANOVA. The means were compared with at least significant difference (*LSD*) test at the 5% level using Microsoft Excel 2010 software (Microsoft, Redmond, USA) for windows and PASW Statistics 18.0 (SPSS, Chicago, USA).

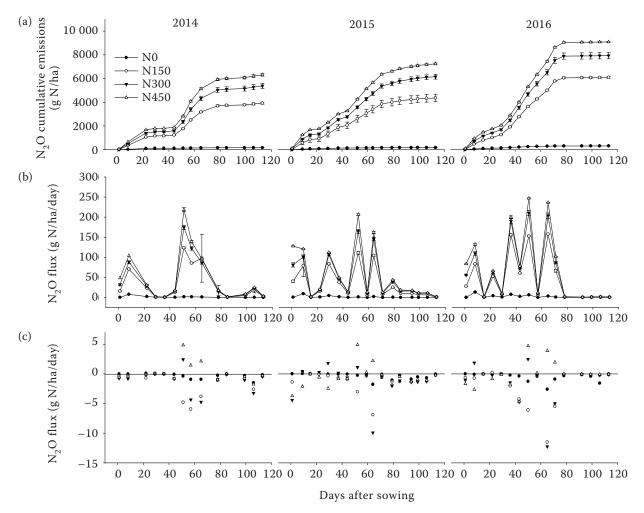


Figure 2. The planting maize field $\rm N_2O$ cumulative emissions (a); daily $\rm N_2O$ flux (b) and the daily $\rm N_2O$ flux difference between planting maize field and no planting maize fields (c) under different fertilizer rates during the maize growing season (2014–2016). No - 0, N150 - 150, N300 - 300, N450 - 450 kg N/ha

RESULTS AND DISCUSSION

 N_2O emission dynamics of planting and no planting maize field. Cumulative N_2O emission in maize growing season of N0, N150, N300, and N450 ranged from 166.43 to 317.11 g/ha, from 3920.0 to 6090.49 g/ha, from 5380.24 to 7926.54 g/ha and from 6314.96 to 9084.19 g/ha, respectively, which significantly increased with nitrogen application (Figure 2a and Table 1). The trends of daily soil N_2O emissions from planting maize field under different treatments were mostly identical, with emission peaking after fertilizing, irrigation, and rainfall (Figure 2b). However, N_2O emissions were different from planting maize field and no planting maize field under the same N application levels, and the degree of difference changed with the growth periods (Figure 2c).

Nitrogen content is the main factor determining soil nitrification and denitrification, which is, in turn, the main factors to affect soil $\rm N_2O$ emission (Allen et al. 2010, Nan et al. 2016). As maize absorbs large amounts of soil N for growth, maize growth is also the main factor affecting soil nitrification and

Table 1. Cumulative $\rm N_2O$ emissions from planting maize field and no planting maize fields under different fertilizer rates and the differential during the maize growing season (2014–2016)

Treatment		Planting maize field	No planting maize field	Differential
			(kg N/ha)	
2014	N0	0.17 ± 0.01	0.21 ± 0.01	-0.04
	N150	3.92 ± 0.08	4.11 ± 0.11	-0.19
	N300	5.38 ± 0.22	5.52 ± 0.19	-0.14
	N450	6.29 ± 0.11	6.31 ± 0.17	-0.02
2015	N0	0.18 ± 0.01	0.22 ± 0.01	-0.04
	N150	4.36 ± 0.32	4.52 ± 0.30	-0.16
	N300	6.16 ± 0.20	6.29 ± 0.10	-0.13
	N450	7.24 ± 0.08	7.30 ± 0.11	-0.06
2016	N0	0.32 ± 0.02	0.38 ± 0.01	-0.07
	N150	6.09 ± 0.07	6.34 ± 0.19	-0.25
	N300	7.93 ± 0.26	8.09 ± 0.27	-0.16
	N450	9.08 ± 0.05	9.10 ± 0.36	-0.01

N0 - 0, N150 - 150, N300 - 300, N450 - 450 kg N/ha

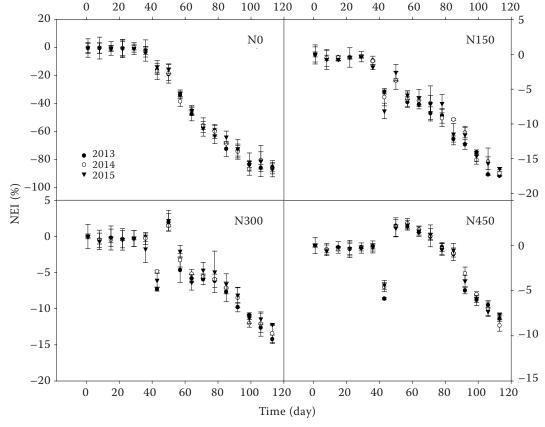


Figure 3. The impact of maize growth on N_2O emission (NEI) in maize growth stages under different nitrogen (N) application rates. N0 – 0, N150 – 150, N300 – 300, N450 – 450 kg N/ha

denitrification, and a potential driver of soil $\rm N_2O$ emission levels (Snyder et al. 2009). As a result, under the same N fertilizer conditions, $\rm N_2O$ emissions from planting maize field was less than that of no planting maize field.

NEI during the maize growth period. The altering trend and degree about NEI of various years are similar, the average of 2014, 2015 and 2016 are -37.56, -37.39, and -35.74%, respectively (Figure 3, N0). The NEI values showed a decreasing trend with the growth of maize in all years, but there were no significant changes (average: $0.730 \pm 0.115\%$) during the growth period from 0 to 36 days after sowing (sowing to V6). The average NEI was $-56.923 \pm 1.010\%$ from 37 to 113 days (V12 to R6) and decreased linearly (y = -1.07x + 26.85, $R^2 = 0.95$) with the growth of maize.

The NEI was negative in planting maize field because maize growth reduced farmland $\rm N_2O$ emissions by absorbs large amounts of soil N. The N-absorption

capacity varied among different stages of maize development (Grzebisz 2013). The absorption capacity of maize at different growth stages directly affects the concentration of soil $\mathrm{NH_4^+}$ -N and $\mathrm{NO_3^-}$ -N (Manzur et al. 2014, Plaza-Bonilla et al. 2014b), which in turn affects the soil $\mathrm{N_2O}$ emissions (Bonelli et al. 2016). The rate of reduction of soil $\mathrm{NH_4^+}$ -N and $\mathrm{NO_3^-}$ -N increases gradually through the growth period of maize, while the reduction rate in the field with no planting maize field was steady (Cassman et al. 2002). Hence, the difference in $\mathrm{N_2O}$ emission between maize planting field and no planting maize field increased through the maize growth period.

Changes in the NEI with N application rate. NEI was consistent across years under the same N application rate but significantly increased with the increase of N application rate (Figure 3). NEI for N150, N300, and N450 were -6.74, -4.75, and -1.57, respectively. With the increasing of N application from N0 to N450, NEI decreased linearly

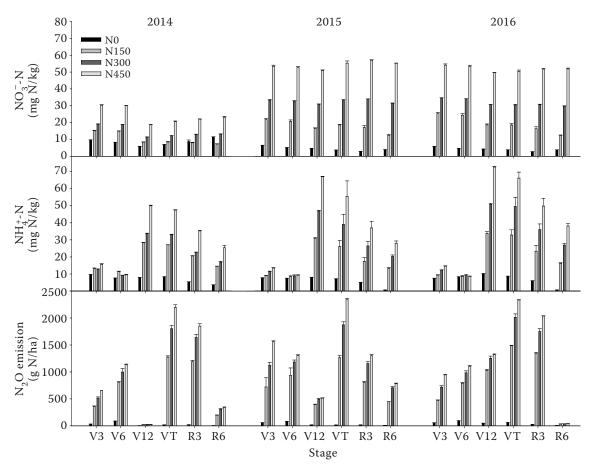


Figure 4. Nitrate nitrogen (NO $_3^-$ -N) and ammonium nitrogen (NH $_4^+$ -N) at 0–20 cm depth, and accumulative N $_2$ O emissions from critical maize stages in the N0, N150, N300, and N450 treatments. Vertical bars denote the standard error of the means (n=3). N0 – 0, N150 – 150, N300 – 300, N450 – 450 kg N/ha; V3 – trilobites period; V6 – six leaf stage; V12 – twelve leaf stage; VT – tasseling stage; R3 – ratooning buds; R6 – full ripeness period

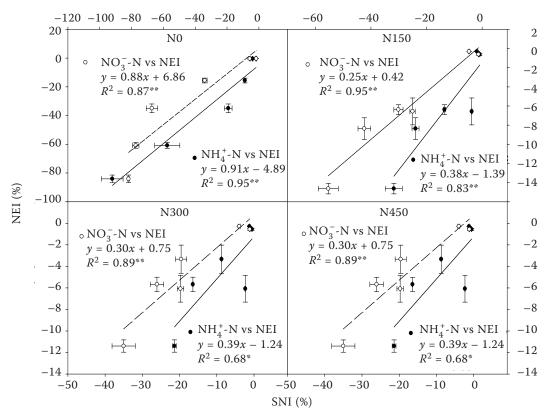


Figure 5. The correlation between the effect of nitrogen (N) on N_2O emission and soli N (NH $_4^+$ -N and NO $_3^-$ -N). N0 – 0, N150 – 150, N300 – 300, N450 – 450 kg N/ha; *P < 0.05; **P < 0.01; ***P < 0.001; NEI – effect of maize growth on N_2O emission

 $(y = -0.016x + 0.245, R^2 = 0.99)$. The N application has a significant impact on NEI after topdressing. From topdressing to harvest, the NEI for N150, N300, and N450 reduced by 15.796, 12.545, and 8.026%, respectively, than that before topdressing.

Nitrogen fertilizer application promotes crop growth and absorption of soil N (Boomsma et al. 2010, Manzur et al. 2014). With the increase of N application, N gradually satisfied the need of crop growth, microbial processes of N_2O obtained more NH_4^+ -N and NO_3^- -N at the same time (Linquist et al. 2012). The effect of maize growth on N₂O emission gradually decreases with the increase of N application. Thus, the NEI increased significantly with N fertilizer application. However, NEI being greater than zero after topdressing (Figure 3, N300 and N450). The possible reason is topdressing can prompt crop roots and soil microbes to secrete more enzymes related to the decomposition of organic molecules and N compounds (Berg and Smalla 2009). Many other factors linked with maize growth are likely to be involved in increasing soil N₂O emissions, but the specific factors and the mechanisms involved remain unclear.

Soil N is the key factor for the NEI. The NH_4^+ -N and NO_3^- -N from 2014 to 2016 with the N applica-

tion levels at the six growth stages shown in Figure 4. The trend of $\rm N_2O$ accumulated emissions with the maize growth period from planting maize field was not completely consistent with this concentration of soil $\rm NH_4^+\text{-}N$ and $\rm NO_3^-\text{-}N$. However, the NEI was closely correlated with SNI of $\rm NH_4^+\text{-}N$ and $\rm NO_3^-\text{-}N$ (Figure 5).

In addition to soil N, field management can influence crop growth and affect the NEI directly or indirectly (Yao et al. 2009). Further study is needed on the interaction between farmland management and the effect on N_2O emission to determine the mechanisms of crops affect soil N_2O emission.

REFERENCES

Abalos D., Jeffery S., Sanz-Cobena A., Guardia G., Vallejo A. (2014): Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture, Ecosystems and Environment, 189: 136–144.

Akiyama H., Yan X.Y., Yagi K. (2010): Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for $\rm N_2O$ and NO emissions from agricultural soils: Meta-analysis. Global Change Biology, 16: 1837–1846.

- Allen D.E., Kingston G., Rennenberg H., Dalal R.C., Schmidt S. (2010): Effect of nitrogen fertilizer management and waterlogging on nitrous oxide emission from subtropical sugarcane soils. Agriculture, Ecosystems and Environment, 136: 209–217.
- Berg G., Smalla K. (2009): Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68: 1–13.
- Bonelli L.E., Monzon J.P., Cerrudo A., Rizzalli R.H., Andrade F.H. (2016): Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Research, 198: 215–225.
- Boomsma C.R., Santini J.B., West T.D., Brewer J.C., McIntyre L.M., Vyn T.J. (2010): Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in a long-term experiment. Soil and Tillage Research, 106: 227–240.
- Cassman K.G., Dobermann A.R., Walters D.T. (2002): Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio, 31: 132–140.
- Ciampitti I.A., Vyn T.J. (2012): Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research, 133: 48–67.
- FAO (2015): Faostat. Rome, Food and Agriculture Organization of the United Nations. Available at: http://faostst.fao.org/ (accessed March, 2015)
- Grzebisz W. (2013): Crop response to magnesium fertilization as affected by nitrogen supply. Plant and Soil, 368: 23–39.
- Hoben J.P., Gehl R.J., Millar N., Grace P.R., Robertson G.P. (2010): Nonlinear nitrous oxide ($\rm N_2O$) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biology, 17: 1140–1152.
- Hu X.-K., Su F., Ju X.-T., Gao B., Oenema O., Christie P., Huang B.-X., Jiang R.-F., Zhang F.-S. (2013): Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes. Environmental Pollution, 176: 198–207.
- Huang T., Yang H., Huang C.C., Ju X.T. (2017): Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system. Field Crops Research, 204: 1–11.
- Jarecki M.K., Parkin T.B., Chan A.S.K., Kaspar T.C., Moorman T.B., Singer J.W., Kerr B.J., Hatfield J.L., Jones R. (2009): Cover crop effects on nitrous oxide emission from a manure-treated Mollisol. Agriculture, Ecosystems and Environment, 134: 29–35.
- Kim D.-G., Hernandez-Ramirez G., Giltrap D. (2013): Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis. Agriculture, Ecosystems and Environment, 168: 53–65.
- Kool D.M., Dolfing J., Wrage N., van Groenigen J.W. (2011): Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biology and Biochemistry, 43: 174–178.
- Linquist B.A., Adviento-Borbe M.A., Pittelkow C.M., van Kessel C., van Groenigen K.J. (2012): Fertilizer management practices and

- greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Research, 135: 10-21.
- Liu K., Wiatrak P. (2012): Corn production response to tillage and nitrogen application in dry-land environment. Soil and Tillage Research, 124: 138–143.
- Manzur M.E., Hall A.J., Chimenti C.A. (2014): Root lodging tolerance in *Helianthus annuus* (L.): Associations with morphological and mechanical attributes of roots. Plant and Soil, 381: 71–83.
- Mosier A.R., Halvorson A.D., Reule C.A., Liu X.J. (2006): Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. Journal of Environmental Quality, 35: 1584–1598.
- Nan W.G., Yue S.C., Li S.Q., Huang H.Z., Shen Y.F. (2016): Characteristics of $\rm N_2O$ production and transport within soil profiles subjected to different nitrogen application rates in China. Science of The Total Environment, 542: 864–875.
- Plaza-Bonilla D., Álvaro-Fuentes J., Arrúe J.L., Cantero-Martínez C. (2014a): Tillage and nitrogen fertilization effects on nitrous oxide yield-scaled emissions in a rainfed Mediterranean area. Agriculture, Ecosystems and Environment, 189: 43–52.
- Plaza-Bonilla D., Álvaro-Fuentes J., Hansen N.C., Lampurlanés J., Cantero-Martínez C. (2014b): Winter cereal root growth and aboveground-belowground biomass ratios as affected by site and tillage system in dryland Mediterranean conditions. Plant and Soil, 374: 925–939.
- Rafique R., Hennessy D., Kiley G. (2011): Nitrous oxide emission from grassland under different management systems. Ecosystems, 14: 563–582.
- Snyder C.S., Bruulsema T.W., Jensen T.L., Fixen P.E. (2009): Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133: 247–266.
- Van Groenigen J.W., Velthof G.L., Oenema O., Van Groenigen K.J., Van Kessel C. (2010): Towards an agronomic assessment of N₂O emissions: A case study for arable crops. European Journal of Soil Biology, 61: 903–913.
- Yao Z.S., Zheng X.H., Xie B.H., Mei B.L., Wang R., Butterbach-Bahl K., Zhu J.G., Yin R. (2009): Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation. Soil Biology and Biochemistry, 41: 2131–2140.
- Zhang Y.F., Sheng J., Wang Z.C., Chen L.G., Zheng J.C. (2015): Nitrous oxide and methane emissions from a Chinese wheat-rice cropping system under different tillage practices during the wheat-growing season. Soil and Tillage Research, 146: 261–269.
- Zou J., Lu Y., Huang Y. (2010): Estimates of synthetic fertilizer N-induced direct nitrous oxide emission from Chinese croplands during 1980–2000. Environmental Pollution, 158: 631–635.

Received on November 29, 2018 Accepted on April 15, 2019 Published online on April 21, 2019